???pagination.result.count???
Identification of non-Ser/Thr-Pro consensus motifs for Cdk1 and their roles in mitotic regulation of C2H2 zinc finger proteins and Ect2. , Suzuki K, Sako K, Akiyama K, Isoda M, Senoo C, Nakajo N, Sagata N ., Sci Rep. January 12, 2015; 5 7929.
Emi2 mediates meiotic MII arrest by competitively inhibiting the binding of Ube2S to the APC/C. , Sako K, Suzuki K, Isoda M, Yoshikai S, Senoo C, Nakajo N, Ohe M, Sagata N ., Nat Commun. January 1, 2014; 5 3667.
Dynamic regulation of Emi2 by Emi2-bound Cdk1/ Plk1/ CK1 and PP2A-B56 in meiotic arrest of Xenopus eggs. , Isoda M, Sako K, Suzuki K, Nishino K, Nakajo N, Ohe M, Ezaki T, Kanemori Y, Inoue D, Ueno H, Sagata N ., Dev Cell. September 13, 2011; 21 (3): 506-19.
Temporal and spatial expression patterns of Cdc25 phosphatase isoforms during early Xenopus development. , Nakajo N, Deno YK, Ueno H, Kenmochi C, Shimuta K, Sagata N ., Int J Dev Biol. January 1, 2011; 55 (6): 627-32.
Emi2 inhibition of the anaphase-promoting complex/cyclosome absolutely requires Emi2 binding via the C-terminal RL tail. , Ohe M, Kawamura Y, Ueno H, Inoue D, Kanemori Y, Senoo C, Isoda M, Nakajo N, Sagata N ., Mol Biol Cell. March 15, 2010; 21 (6): 905-13.
The extracellular signal-regulated kinase-mitogen-activated protein kinase pathway phosphorylates and targets Cdc25A for SCF beta-TrCP-dependent degradation for cell cycle arrest. , Isoda M, Kanemori Y, Nakajo N, Uchida S, Yamashita K, Ueno H, Sagata N ., Mol Biol Cell. April 1, 2009; 20 (8): 2186-95.
FoxM1-driven cell division is required for neuronal differentiation in early Xenopus embryos. , Ueno H, Nakajo N, Watanabe M, Isoda M, Sagata N ., Development. June 1, 2008; 135 (11): 2023-30.
Mechanism of degradation of CPEB during Xenopus oocyte maturation. , Setoyama D, Yamashita M , Sagata N ., Proc Natl Acad Sci U S A. November 13, 2007; 104 (46): 18001-6.
A direct link of the Mos- MAPK pathway to Erp1/ Emi2 in meiotic arrest of Xenopus laevis eggs. , Inoue D, Ohe M, Kanemori Y, Nobui T, Sagata N ., Nature. April 26, 2007; 446 (7139): 1100-4.
Mechanism for inactivation of the mitotic inhibitory kinase Wee1 at M phase. , Okamoto K, Sagata N ., Proc Natl Acad Sci U S A. March 6, 2007; 104 (10): 3753-8.
Erp1/ Emi2 is essential for the meiosis I to meiosis II transition in Xenopus oocytes. , Ohe M, Inoue D, Kanemori Y, Sagata N ., Dev Biol. March 1, 2007; 303 (1): 157-64.
[Regulation of the cell cycle and checkpoint by SCF(beta-TrCP)]. , Kanemori Y, Sagata N ., Tanpakushitsu Kakusan Koso. August 1, 2006; 51 (10 Suppl): 1386-90.
Beta-TrCP recognizes a previously undescribed nonphosphorylated destruction motif in Cdc25A and Cdc25B phosphatases. , Kanemori Y, Uto K, Sagata N ., Proc Natl Acad Sci U S A. May 3, 2005; 102 (18): 6279-84.
The Polo-like kinase Plx1 interacts with and inhibits Myt1 after fertilization of Xenopus eggs. , Inoue D, Sagata N ., EMBO J. March 9, 2005; 24 (5): 1057-67.
Chk1, but not Chk2, inhibits Cdc25 phosphatases by a novel common mechanism. , Uto K, Inoue D, Shimuta K, Nakajo N, Sagata N ., EMBO J. August 18, 2004; 23 (16): 3386-96.
Regulation of Chk1 kinase by autoinhibition and ATR-mediated phosphorylation. , Katsuragi Y, Sagata N ., Mol Biol Cell. April 1, 2004; 15 (4): 1680-9.
Mr 25 000 protein, a substrate for protein serine/threonine kinases, is identified as a part of Xenopus laevis vitellogenin B1. , Yoshitome S, Nakamura H, Nakajo N, Okamoto K, Sugimoto I, Kohara H, Kitayama K, Igarashi K, Ito S, Sagata N , Hashimoto E., Dev Growth Differ. June 1, 2003; 45 (3): 283-94.
The C-terminal seven amino acids in the cytoplasmic retention signal region of cyclin B2 are required for normal bipolar spindle formation in Xenopus oocytes and embryos. , Yoshitome S, Furuno N , Hashimoto E, Sagata N ., Mol Cancer Res. June 1, 2003; 1 (8): 589-97.
The RRASK motif in Xenopus cyclin B2 is required for the substrate recognition of Cdc25C by the cyclin B- Cdc2 complex. , Goda T, Ishii T, Nakajo N, Sagata N , Kobayashi H., J Biol Chem. May 23, 2003; 278 (21): 19032-7.
Expression of cell-cycle regulators during Xenopus oogenesis. , Furuno N , Kawasaki A, Sagata N ., Gene Expr Patterns. May 1, 2003; 3 (2): 165-8.
Molecular biology. Untangling checkpoints. , Sagata N ., Science. December 6, 2002; 298 (5600): 1905-7.
Requirement for both EDEN and AUUUA motifs in translational arrest of Mos mRNA upon fertilization of Xenopus eggs. , Ueno S , Sagata N ., Dev Biol. October 1, 2002; 250 (1): 156-67.
Chk1 is activated transiently and targets Cdc25A for degradation at the Xenopus midblastula transition. , Shimuta K, Nakajo N, Uto K, Hayano Y, Okazaki K, Sagata N ., EMBO J. July 15, 2002; 21 (14): 3694-703.
The existence of two distinct Wee1 isoforms in Xenopus: implications for the developmental regulation of the cell cycle. , Okamoto K, Nakajo N, Sagata N ., EMBO J. May 15, 2002; 21 (10): 2472-84.
Cytoplasmic occurrence of the Chk1/ Cdc25 pathway and regulation of Chk1 in Xenopus oocytes. , Oe T, Nakajo N, Katsuragi Y, Okazaki K, Sagata N ., Dev Biol. January 1, 2001; 229 (1): 250-61.
The Mos/ MAPK pathway is involved in metaphase II arrest as a cytostatic factor but is neither necessary nor sufficient for initiating oocyte maturation in goldfish. , Kajiura-Kobayashi H, Yoshida N, Sagata N , Yamashita M , Nagahama Y., Dev Genes Evol. September 1, 2000; 210 (8-9): 416-25.
Nek2B, a novel maternal form of Nek2 kinase, is essential for the assembly or maintenance of centrosomes in early Xenopus embryos. , Uto K, Sagata N ., EMBO J. April 17, 2000; 19 (8): 1816-26.
Absence of Wee1 ensures the meiotic cell cycle in Xenopus oocytes. , Nakajo N, Yoshitome S, Iwashita J, Iida M, Uto K, Ueno S , Okamoto K, Sagata N ., Genes Dev. February 1, 2000; 14 (3): 328-38.
Two structural variants of Nek2 kinase, termed Nek2A and Nek2B, are differentially expressed in Xenopus tissues and development. , Uto K, Nakajo N, Sagata N ., Dev Biol. April 15, 1999; 208 (2): 456-64.
Involvement of Chk1 kinase in prophase I arrest of Xenopus oocytes. , Nakajo N, Oe T, Uto K, Sagata N ., Dev Biol. March 15, 1999; 207 (2): 432-44.
Overexpression of the cytoplasmic retention signal region of cyclin B2, but not of cyclin B1, inhibits bipolar spindle formation in Xenopus oocytes. , Yoshitome S, Furuno N , Sagata N ., Biol Cell. October 1, 1998; 90 (6-7): 509-18.
Essential role of germinal vesicle material in the meiotic cell cycle of Xenopus oocytes. , Iwashita J, Hayano Y, Sagata N ., Proc Natl Acad Sci U S A. April 14, 1998; 95 (8): 4392-7.
Meiotic cell cycle in Xenopus oocytes is independent of cdk2 kinase. , Furuno N , Ogawa Y, Iwashita J, Nakajo N, Sagata N ., EMBO J. July 1, 1997; 16 (13): 3860-5.
cDNA cloning of a novel B subunit of Xenopus protein phosphatase 2A and its biological activity in oocytes. , Iwashita J, Shima H, Nagao M, Sagata N ., Biochem Biophys Res Commun. March 6, 1997; 232 (1): 218-22.
What does Mos do in oocytes and somatic cells? , Sagata N ., Bioessays. January 1, 1997; 19 (1): 13-21.
Isolation of a cDNA encoding the X enopus homologue of mammalian Cdc25A that can induce meiotic maturation of oocytes. , Okazaki K, Hayashida K, Iwashita J, Harano M, Furuno N , Sagata N ., Gene. October 31, 1996; 178 (1-2): 111-4.
Parthenogenetic activation of oocytes in c- mos-deficient mice. , Hashimoto N, Watanabe N, Furuta Y, Tamemoto H, Sagata N , Yokoyama M, Okazaki K, Nagayoshi M, Takeda N, Ikawa Y., Nature. July 7, 1994; 370 (6484): 68-71.
Suppression of DNA replication via Mos function during meiotic divisions in Xenopus oocytes. , Furuno N , Nishizawa M, Okazaki K, Tanaka H , Iwashita J, Nakajo N, Ogawa Y, Sagata N ., EMBO J. May 15, 1994; 13 (10): 2399-410.
Degradation of Mos by the N-terminal proline (Pro2)-dependent ubiquitin pathway on fertilization of Xenopus eggs: possible significance of natural selection for Pro2 in Mos. , Nishizawa M, Furuno N , Okazaki K, Tanaka H , Ogawa Y, Sagata N ., EMBO J. October 1, 1993; 12 (10): 4021-7.
Mos is degraded by the 26S proteasome in a ubiquitin-dependent fashion. , Ishida N, Tanaka K, Tamura T, Nishizawa M, Okazaki K, Sagata N , Ichihara A., FEBS Lett. June 21, 1993; 324 (3): 345-8.
Differential occurrence of CSF-like activity and transforming activity of Mos during the cell cycle in fibroblasts. , Okazaki K, Nishizawa M, Furuno N , Yasuda H, Sagata N ., EMBO J. July 1, 1992; 11 (7): 2447-56.
The 'second-codon rule' and autophosphorylation govern the stability and activity of Mos during the meiotic cell cycle in Xenopus oocytes. , Nishizawa M, Okazaki K, Furuno N , Watanabe N, Sagata N ., EMBO J. July 1, 1992; 11 (7): 2433-46.
Independent inactivation of MPF and cytostatic factor ( Mos) upon fertilization of Xenopus eggs. , Watanabe N, Hunt T , Ikawa Y, Sagata N ., Nature. July 18, 1991; 352 (6332): 247-8.
Correlation between physiological and transforming activities of the c- mos proto-oncogene product and identification of an essential Mos domain for these activities. , Okazaki K, Furuno N , Watanabe N, Ikawa Y, Vande Woude GF, Sagata N ., Jpn J Cancer Res. March 1, 1991; 82 (3): 250-3.
[The product of c- mos proto-oncogene is expressed in oocytes and functions as a cytostatic factor (CSF)]. , Watanabe N, Sagata N ., Nihon Rinsho. August 1, 1990; 48 (8): 104-10.
mos proto-oncogene function. , Vande Woude GF, Buccione R, Daar I , Eppig JJ, Oskarsson M, Paules R, Sagata N , Yew N., Ciba Found Symp. January 1, 1990; 150 147-60; discussion 160-2.
Specific proteolysis of the c- mos proto-oncogene product by calpain on fertilization of Xenopus eggs. , Watanabe N, Vande Woude GF, Ikawa Y, Sagata N ., Nature. November 30, 1989; 342 (6249): 505-11.
The c- mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs. , Sagata N , Watanabe N, Vande Woude GF, Ikawa Y., Nature. November 30, 1989; 342 (6249): 512-8.
The product of the mos proto-oncogene as a candidate "initiator" for oocyte maturation. , Sagata N , Daar I , Oskarsson M, Showalter SD, Vande Woude GF., Science. August 11, 1989; 245 (4918): 643-6.
Function of c- mos proto-oncogene product in meiotic maturation in Xenopus oocytes. , Sagata N , Oskarsson M, Copeland T, Brumbaugh J, Vande Woude GF., Nature. October 6, 1988; 335 (6190): 519-25.