???pagination.result.count???
???pagination.result.page???
1
Remnants of the Balbiani body are required for formation of RNA transport granules in Xenopus oocytes. , Yang C, Dominique GM, Champion MM , Huber PW ., iScience. March 18, 2022; 25 (3): 103878.
High-Throughput, Comprehensive Single-Cell Proteomic Analysis of Xenopus laevis Embryos at the 50-Cell Stage Using a Microplate-Based MICROFASP System. , Zhang Z , Dubiak KM , Shishkova E, Huber PW , Coon JJ, Dovichi NJ ., Anal Chem. February 22, 2022; 94 (7): 3254-3259.
Quantitative capillary zone electrophoresis-mass spectrometry reveals the N-glycome developmental plan during vertebrate embryogenesis. , Qu Y, Dubiak KM , Peuchen EH , Champion MM , Zhang Z , Hebert AS, Wright S, Coon JJ, Huber PW , Dovichi NJ ., Mol Omics. June 15, 2020; 16 (3): 210-220.
Miniaturized Filter-Aided Sample Preparation (MICRO-FASP) Method for High Throughput, Ultrasensitive Proteomics Sample Preparation Reveals Proteome Asymmetry in Xenopus laevis Embryos. , Zhang Z , Dubiak KM , Huber PW , Dovichi NJ ., Anal Chem. April 7, 2020; 92 (7): 5554-5560.
MALDI-imaging of early stage Xenopus laevis embryos. , Wang M, Dubiak K , Zhang Z , Huber PW , Chen DDY, Dovichi NJ ., Talanta. November 1, 2019; 204 138-144.
A deficiency in SUMOylation activity disrupts multiple pathways leading to neural tube and heart defects in Xenopus embryos. , Bertke MM, Dubiak KM , Cronin L, Zeng E, Huber PW ., BMC Genomics. May 17, 2019; 20 (1): 386.
Time-lapse imaging of cell death in cell culture and whole living organisms using turn-on deep-red fluorescent probes. , Jarvis TS, Roland FM, Dubiak KM , Huber PW , Smith BD ., J Mater Chem B. August 14, 2018; 6 (30): 4963-4971.
Phosphorylation Dynamics Dominate the Regulated Proteome during Early Xenopus Development. , Peuchen EH , Cox OF, Sun L, Hebert AS, Coon JJ, Champion MM , Dovichi NJ , Huber PW ., Sci Rep. November 15, 2017; 7 (1): 15647.
Single Cell Proteomics Using Frog (Xenopus laevis) Blastomeres Isolated from Early Stage Embryos, Which Form a Geometric Progression in Protein Content. , Sun L, Dubiak KM , Peuchen EH , Zhang Z , Zhu G, Huber PW , Dovichi NJ ., Anal Chem. July 5, 2016; 88 (13): 6653-7.
Proteomics of Xenopus development. , Sun L, Champion MM , Huber PW , Dovichi NJ ., Mol Hum Reprod. March 1, 2016; 22 (3): 193-9.
Nearly 1000 Protein Identifications from 50 ng of Xenopus laevis Zygote Homogenate Using Online Sample Preparation on a Strong Cation Exchange Monolith Based Microreactor Coupled with Capillary Zone Electrophoresis. , Zhang Z , Sun L, Zhu G, Cox OF, Huber PW , Dovichi NJ ., Anal Chem. January 5, 2016; 88 (1): 877-82.
Small ubiquitin-like modifier (SUMO)-mediated repression of the Xenopus Oocyte 5 S rRNA genes. , Malik MQ, Bertke MM, Huber PW ., J Biol Chem. December 19, 2014; 289 (51): 35468-81.
Quantitative proteomics of Xenopus laevis embryos: expression kinetics of nearly 4000 proteins during early development. , Sun L, Bertke MM, Champion MM , Zhu G, Huber PW , Dovichi NJ ., Sci Rep. February 26, 2014; 4 4365.
RNA localization in Xenopus oocytes uses a core group of trans-acting factors irrespective of destination. , Snedden DD, Bertke MM, Vernon D, Huber PW ., RNA. July 1, 2013; 19 (7): 889-95.
Binding site for Xenopus ribosomal protein L5 and accompanying structural changes in 5S rRNA. , Scripture JB, Huber PW ., Biochemistry. May 10, 2011; 50 (18): 3827-39.
Detection of protein-RNA complexes in Xenopus oocytes. , Huber PW , Zhao WM ., Methods. May 1, 2010; 51 (1): 82-6.
Interactions of 40LoVe within the ribonucleoprotein complex that forms on the localization element of Xenopus Vg1 mRNA. , Kroll TT , Swenson LB, Hartland EI, Snedden DD, Goodson HV, Huber PW ., Mech Dev. July 1, 2009; 126 (7): 523-38.
A manganese-dependent ribozyme in the 3'-untranslated region of Xenopus Vg1 mRNA. , Kolev NG, Hartland EI, Huber PW ., Nucleic Acids Res. October 1, 2008; 36 (17): 5530-9.
Restricted specificity of Xenopus TFIIIA for transcription of somatic 5S rRNA genes. , Ghose R, Malik M, Huber PW ., Mol Cell Biol. March 1, 2004; 24 (6): 2467-77.
Mutual induced fit binding of Xenopus ribosomal protein L5 to 5S rRNA. , DiNitto JP, Huber PW ., J Mol Biol. July 25, 2003; 330 (5): 979-92.
VgRBP71 stimulates cleavage at a polyadenylation signal in Vg1 mRNA, resulting in the removal of a cis-acting element that represses translation. , Kolev NG, Huber PW ., Mol Cell. March 1, 2003; 11 (3): 745-55.
A homolog of FBP2/ KSRP binds to localized mRNAs in Xenopus oocytes. , Kroll TT , Zhao WM , Jiang C, Huber PW ., Development. December 1, 2002; 129 (24): 5609-19.
Phosphorylation of Xenopus transcription factor IIIA by an oocyte protein kinase CK2. , Westmark CJ, Ghose R, Huber PW ., Biochem J. March 1, 2002; 362 (Pt 2): 375-82.
A role for aromatic amino acids in the binding of Xenopus ribosomal protein L5 to 5S rRNA. , DiNitto JP, Huber PW ., Biochemistry. October 23, 2001; 40 (42): 12645-53.
The structure of helix III in Xenopus oocyte 5 S rRNA: an RNA stem containing a two-nucleotide bulge. , Huber PW , Rife JP, Moore PB., J Mol Biol. September 28, 2001; 312 (4): 823-32.
A proline-rich protein binds to the localization element of Xenopus Vg1 mRNA and to ligands involved in actin polymerization. , Zhao WM , Jiang C, Kroll TT , Huber PW ., EMBO J. May 1, 2001; 20 (9): 2315-25.
Inhibition of RNA polymerase III transcription by a ribosome-associated kinase activity. , Westmark CJ, Ghose R, Huber PW ., Nucleic Acids Res. October 15, 1998; 26 (20): 4758-64.
Analysis of the binding of Xenopus transcription factor IIIA to oocyte 5 S rRNA and to the 5 S rRNA gene. , Rawlings SL, Matt GD, Huber PW ., J Biol Chem. January 12, 1996; 271 (2): 868-77.
Analysis of the binding of Xenopus ribosomal protein L5 to oocyte 5 S rRNA. The major determinants of recognition are located in helix III-loop C. , Scripture JB, Huber PW ., J Biol Chem. November 10, 1995; 270 (45): 27358-65.
Delineation of structural domains in eukaryotic 5S rRNA with a rhodium probe. , Chow CS, Hartmann KM, Rawlings SL, Huber PW , Barton JK., Biochemistry. April 7, 1992; 31 (13): 3534-42.
Structural polymorphism in the major groove of a 5S RNA gene complements the zinc finger domains of transcription factor IIIA. , Huber PW , Morii T, Mei HY, Barton JK., Proc Natl Acad Sci U S A. December 1, 1991; 88 (23): 10801-5.
The use of chemical nucleases to analyze RNA-protein interactions. The TFIIIA-5 S rRNA complex. , Darsillo P, Huber PW ., J Biol Chem. November 5, 1991; 266 (31): 21075-82.
Conformational studies of the nucleic acid binding sites for Xenopus transcription factor IIIA. , Huber PW , Blobe GC, Hartmann KM., J Biol Chem. February 15, 1991; 266 (5): 3278-86.
Use of the cytotoxic nuclease alpha-sarcin to identify the binding site on eukaryotic 5 S ribosomal ribonucleic acid for the ribosomal protein L5. , Huber PW , Wool IG., J Biol Chem. March 5, 1986; 261 (7): 3002-5.
Identification of the binding site on 5S rRNA for the transcription factor IIIA: proposed structure of a common binding site on 5S rRNA and on the gene. , Huber PW , Wool IG., Proc Natl Acad Sci U S A. March 1, 1986; 83 (6): 1593-7.