Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (32)
XB-PERS-1872

Publications By Carlos Aizenman

???pagination.result.count???

???pagination.result.page??? 1


Characterization of Na+ currents regulating intrinsic excitability of optic tectal neurons., Thompson AC, Aizenman CD., Life Sci Alliance. January 1, 2024; 7 (1):   


Role of matrix metalloproteinase-9 in neurodevelopmental deficits and experience-dependent plasticity in Xenopus laevis., Gore SV, James EJ, Huang LC, Park JJ, Berghella A, Thompson AC, Cline HT, Aizenman CD., Elife. July 20, 2021; 10   


Early Developmental Exposure to Fluoxetine and Citalopram Results in Different Neurodevelopmental Outcomes., Liu K, Garcia A, Park JJ, Toliver AA, Ramos L, Aizenman CD., Neuroscience. July 15, 2021; 467 110-121.


Schooling in Xenopus laevis Tadpoles as a Way to Assess Their Neural Development., Lopez V, Khakhalin AS, Aizenman C., Cold Spring Harb Protoc. May 3, 2021; 2021 (5):


A cellular mechanism for inverse effectiveness in multisensory integration., Truszkowski TL, Carrillo OA, Bleier J, Ramirez-Vizcarrondo CM, Felch DL, McQuillan M, Truszkowski CP, Khakhalin AS, Aizenman CD., Elife. March 18, 2017; 6   


Emergence of Selectivity to Looming Stimuli in a Spiking Network Model of the Optic Tectum., Jang EV, Ramirez-Vizcarrondo C, Aizenman CD, Khakhalin AS., Front Neural Circuits. November 24, 2016; 10 95.   


Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits., Truszkowski TL, James EJ, Hasan M, Wishard TJ, Liu Z, Pratt KG, Cline HT, Aizenman CD., Neural Dev. August 8, 2016; 11 (1): 14.   


Multisensory integration in the developing tectum is constrained by the balance of excitation and inhibition., Felch DL, Khakhalin AS, Aizenman CD., Elife. May 24, 2016; 5   


A population of gap junction-coupled neurons drives recurrent network activity in a developing visual circuit., Liu Z, Ciarleglio CM, Hamodi AS, Aizenman CD, Pratt KG., J Neurophysiol. March 1, 2016; 115 (3): 1477-86.


Correction: Multivariate analysis of electrophysiological diversity of Xenopus visual neurons during development and plasticity., Ciarleglio CM, Khakhalin AS, Wang AF, Constantino AC, Yip SP, Aizenman CD., Elife. January 28, 2016; 5 .


Valproate-induced neurodevelopmental deficits in Xenopus laevis tadpoles., James EJ, Gu J, Ramirez-Vizcarrondo CM, Hasan M, Truszkowski TL, Tan Y, Oupravanh PM, Khakhalin AS, Aizenman CD., J Neurosci. February 18, 2015; 35 (7): 3218-29.   


Multivariate analysis of electrophysiological diversity of Xenopus visual neurons during development and plasticity., Ciarleglio CM, Khakhalin AS, Wang AF, Constantino AC, Yip SP, Aizenman CD., Elife. January 6, 2015; 4   


Excitation and inhibition in recurrent networks mediate collision avoidance in Xenopus tadpoles., Khakhalin AS, Koren D, Gu J, Xu H, Aizenman CD., Eur J Neurosci. September 1, 2014; 40 (6): 2948-62.   


A competition-based mechanism mediates developmental refinement of tectal neuron receptive fields., Dong W, Aizenman CD., J Neurosci. November 21, 2012; 32 (47): 16872-9.


Abnormal visual processing and increased seizure susceptibility result from developmental exposure to the biocide methylisothiazolinone., Spawn A, Aizenman CD., Neuroscience. March 15, 2012; 205 194-204.


GABAergic transmission and chloride equilibrium potential are not modulated by pyruvate in the developing optic tectum of Xenopus laevis tadpoles., Khakhalin AS, Aizenman CD., PLoS One. January 1, 2012; 7 (4): e34446.   


Visual experience-dependent maturation of correlated neuronal activity patterns in a developing visual system., Xu H, Khakhalin AS, Nurmikko AV, Aizenman CD., J Neurosci. June 1, 2011; 31 (22): 8025-36.


Sensory modality-specific homeostatic plasticity in the developing optic tectum., Deeg KE, Aizenman CD., Nat Neurosci. May 1, 2011; 14 (5): 548-50.   


A neuroprotective role for polyamines in a Xenopus tadpole model of epilepsy., Bell MR, Belarde JA, Johnson HF, Aizenman CD., Nat Neurosci. April 1, 2011; 14 (4): 505-12.


In vivo spike-timing-dependent plasticity in the optic tectum of Xenopus laevis., Richards BA, Aizenman CD, Akerman CJ., Front Synaptic Neurosci. June 10, 2010; 2 7.   


Neurodevelopmental effects of chronic exposure to elevated levels of pro-inflammatory cytokines in a developing visual system., Lee RH, Mills EA, Schwartz N, Bell MR, Deeg KE, Ruthazer ES, Marsh-Armstrong N, Aizenman CD., Neural Dev. January 4, 2010; 5 2.   


Development of multisensory convergence in the Xenopus optic tectum., Deeg KE, Sears IB, Aizenman CD., J Neurophysiol. December 1, 2009; 102 (6): 3392-404.


Multisensory integration in mesencephalic trigeminal neurons in Xenopus tadpoles., Pratt KG, Aizenman CD., J Neurophysiol. July 1, 2009; 102 (1): 399-412.


Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum., Dong W, Lee RH, Xu H, Yang S, Pratt KG, Cao V, Song YK, Nurmikko A, Aizenman CD., J Neurophysiol. February 1, 2009; 101 (2): 803-15.


There's more than one way to scale a synapse., Aizenman CD, Pratt KG., Neuron. June 12, 2008; 58 (5): 651-3.


Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum., Pratt KG, Dong W, Aizenman CD., Nat Neurosci. April 1, 2008; 11 (4): 467-75.


Roles of NR2A and NR2B in the development of dendritic arbor morphology in vivo., Ewald RC, Van Keuren-Jensen KR, Aizenman CD, Cline HT., J Neurosci. January 23, 2008; 28 (4): 850-61.


Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit., Pratt KG, Aizenman CD., J Neurosci. August 1, 2007; 27 (31): 8268-77.


Enhanced visual activity in vivo forms nascent synapses in the developing retinotectal projection., Aizenman CD, Cline HT., J Neurophysiol. April 1, 2007; 97 (4): 2949-57.


Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo., Aizenman CD, Akerman CJ, Jensen KR, Cline HT., Neuron. August 28, 2003; 39 (5): 831-42.


Visually driven modulation of glutamatergic synaptic transmission is mediated by the regulation of intracellular polyamines., Aizenman CD, Muñoz-Elías G, Cline HT., Neuron. May 16, 2002; 34 (4): 623-34.


Regulation of rho GTPases by crosstalk and neuronal activity in vivo., Li Z, Aizenman CD, Cline HT., Neuron. February 28, 2002; 33 (5): 741-50.

???pagination.result.page??? 1