???pagination.result.count???
???pagination.result.page???
1
Marcks and Marcks-like 1 proteins promote spinal cord development and regeneration in Xenopus. , El Amri M , Pandit A, Schlosser G ., Elife. December 12, 2024; 13
Quantitative proteomics of regenerating and non-regenerating spinal cords in Xenopus. , Kshirsagar A, Ronan R, Rebelo AL, McMahon S, Pandit A, Schlosser G ., Dev Biol. March 16, 2024; 519 65-78.
Adipose tissue derived stem cell secretome induces motor and histological gains after complete spinal cord injury in Xenopus laevis and mice. , Assunção-Silva RC, Pinho A, Cibrão JR, Pereira IM, Monteiro S, Silva NA, Campos J, Rebelo AL, Schlosser G , Pinto L, Pandit A, Salgado AJ., J Tissue Eng. January 1, 2024; 15 20417314231203824.
From "self-differentiation" to organoids-the quest for the units of development. , Schlosser G ., Dev Genes Evol. December 10, 2023; 234 (2): 57-64.
Distinct Glycosylation Responses to Spinal Cord Injury in Regenerative and Nonregenerative Models. , Ronan R, Kshirsagar A, Rebelo AL, Sunny A, Kilcoyne M, Flaherty RO, Rudd PM, Schlosser G , Saldova R, Pandit A, McMahon SS., J Proteome Res. June 3, 2022; 21 (6): 1449-1466.
Eya1 protein distribution during embryonic development of Xenopus laevis. , Almasoudi SH, Schlosser G ., Gene Expr Patterns. December 1, 2021; 42 119213.
Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1. , Almasoudi SH, Schlosser G ., Front Neuroanat. January 1, 2021; 15 722374.
A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis. , Maharana SK , Schlosser G ., BMC Biol. July 16, 2018; 16 (1): 79.
Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes. , Riddiford N, Schlosser G ., Dev Biol. November 15, 2017; 431 (2): 152-167.
Identification of novel cis-regulatory elements of Eya1 in Xenopus laevis using BAC recombineering. , Maharana SK , Pollet N , Schlosser G ., Sci Rep. November 3, 2017; 7 (1): 15033.
Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes. , Hockman D, Burns AJ, Schlosser G , Gates KP, Jevans B, Mongera A, Fisher S, Unlu G, Knapik EW, Kaufman CK, Mosimann C, Zon LI , Lancman JJ, Dong PDS, Lickert H, Tucker AS , Baker CV ., Elife. April 7, 2017; 6
Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes. , Riddiford N, Schlosser G ., Elife. August 31, 2016; 5
Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development. , Domínguez L, Schlosser G , Shen S., Neuroscience. April 2, 2015; 290 61-79.
Vertebrate Cranial Placodes as Evolutionary Innovations-The Ancestor's Tale. , Schlosser G ., Curr Top Dev Biol. January 1, 2015; 111 235-300.
Development and evolution of vertebrate cranial placodes. , Schlosser G ., Dev Biol. May 1, 2014; 389 (1): 1.
The evolutionary history of vertebrate cranial placodes--I: cell type evolution. , Patthey C, Schlosser G , Shimeld SM., Dev Biol. May 1, 2014; 389 (1): 82-97.
The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning. , Schlosser G , Patthey C, Shimeld SM., Dev Biol. May 1, 2014; 389 (1): 98-119.
Early embryonic specification of vertebrate cranial placodes. , Schlosser G ., Wiley Interdiscip Rev Dev Biol. January 1, 2014; 3 (5): 349-63.
Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm. , Pieper M, Ahrens K , Rink E, Peter A, Schlosser G ., Development. March 1, 2012; 139 (6): 1175-87.
Origin and segregation of cranial placodes in Xenopus laevis. , Pieper M, Eagleson GW , Wosniok W, Schlosser G ., Dev Biol. December 15, 2011; 360 (2): 257-75.
Making senses development of vertebrate cranial placodes. , Schlosser G ., Int Rev Cell Mol Biol. January 1, 2010; 283 129-234.
Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. , Schlosser G , Awtry T, Brugmann SA , Jensen ED, Neilson K , Ruan G, Stammler A, Voelker D, Yan B , Zhang C, Klymkowsky MW , Moody SA ., Dev Biol. August 1, 2008; 320 (1): 199-214.
Do vertebrate neural crest and cranial placodes have a common evolutionary origin? , Schlosser G ., Bioessays. July 1, 2008; 30 (7): 659-72.
Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans. , Schlosser G ., Front Zool. June 23, 2008; 5 9.
A simple model of co-evolutionary dynamics caused by epistatic selection. , Schlosser G , Wagner GP., J Theor Biol. January 7, 2008; 250 (1): 48-65.
How old genes make a new head: redeployment of Six and Eya genes during the evolution of vertebrate cranial placodes. , Schlosser G ., Integr Comp Biol. September 1, 2007; 47 (3): 343-59.
Induction and specification of cranial placodes. , Schlosser G ., Dev Biol. June 15, 2006; 294 (2): 303-51.
Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis. , Ahrens K , Schlosser G ., Dev Biol. December 1, 2005; 288 (1): 40-59.
Secondary neurogenesis in the brain of the African clawed frog, Xenopus laevis, as revealed by PCNA, Delta-1, Neurogenin-related-1, and NeuroD expression. , Wullimann MF, Rink E, Vernier P, Schlosser G ., J Comp Neurol. August 29, 2005; 489 (3): 387-402.
The evolutionary origin of neural crest and placodes. , Baker CV , Schlosser G ., J Exp Zool B Mol Dev Evol. July 15, 2005; 304 (4): 269-73.
Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes. , Schlosser G ., J Exp Zool B Mol Dev Evol. July 15, 2005; 304 (4): 347-99.
Molecular anatomy of placode development in Xenopus laevis. , Schlosser G , Ahrens K ., Dev Biol. July 15, 2004; 271 (2): 439-66.
Hypobranchial placodes in Xenopus laevis give rise to hypobranchial ganglia, a novel type of cranial ganglia. , Schlosser G ., Cell Tissue Res. April 1, 2003; 312 (1): 21-9.
Mosaic evolution of neural development in anurans: acceleration of spinal cord development in the direct developing frog Eleutherodactylus coqui. , Schlosser G ., Anat Embryol (Berl). February 1, 2003; 206 (3): 215-27.
Thyroid hormone promotes neurogenesis in the Xenopus spinal cord. , Schlosser G , Koyano-Nakagawa N, Kintner C ., Dev Dyn. December 1, 2002; 225 (4): 485-98.
Development and evolution of lateral line placodes in amphibians. - II. Evolutionary diversification. , Schlosser G ., Zoology (Jena). January 1, 2002; 105 (3): 177-93.
Development and evolution of lateral line placodes in amphibians I. Development. , Schlosser G ., Zoology (Jena). January 1, 2002; 105 (2): 119-46.
Limb development in a "nonmodel" vertebrate, the direct-developing frog Eleutherodactylus coqui. , Hanken J , Carl TF, Richardson MK, Olsson L , Schlosser G , Osabutey CK, Klymkowsky MW ., J Exp Zool. December 15, 2001; 291 (4): 375-88.
Lateral line placodes are induced during neurulation in the axolotl. , Schlosser G , Northcutt RG., Dev Biol. June 1, 2001; 234 (1): 55-71.
Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors. , David R , Ahrens K , Wedlich D , Schlosser G ., Mech Dev. May 1, 2001; 103 (1-2): 189-92.
Development of neurogenic placodes in Xenopus laevis. , Schlosser G , Northcutt RG., J Comp Neurol. March 6, 2000; 418 (2): 121-46.
Loss of ectodermal competence for lateral line placode formation in the direct developing frog Eleutherodactylus coqui. , Schlosser G , Kintner C , Northcutt RG., Dev Biol. September 15, 1999; 213 (2): 354-69.
Development of the retina is altered in the directly developing frog Eleutherodactylus coqui (Leptodactylidae). , Schlosser G , Roth G., Neurosci Lett. March 21, 1997; 224 (3): 153-6.
Evolution of nerve development in frogs. II. Modified development of the peripheral nervous system in the direct-developing frog Eleutherodactylus coqui (Leptodactylidae). , Schlosser G , Roth G., Brain Behav Evol. January 1, 1997; 50 (2): 94-128.
Evolution of nerve development in frogs. I. The development of the peripheral nervous system in Discoglossus pictus (Discoglossidae). , Schlosser G , Roth G., Brain Behav Evol. January 1, 1997; 50 (2): 61-93.
Distribution of cranial and rostral spinal nerves in tadpoles of the frog Discoglossus pictus (Discoglossidae). , Schlosser G , Roth G., J Morphol. November 1, 1995; 226 (2): 189-212.