Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (46)
XB-PERS-2024

Publications By Gerhard Schlosser

???pagination.result.count???

???pagination.result.page??? 1


Marcks and Marcks-like 1 proteins promote spinal cord development and regeneration in Xenopus., El Amri M, Pandit A, Schlosser G., Elife. December 12, 2024; 13   


Quantitative proteomics of regenerating and non-regenerating spinal cords in Xenopus., Kshirsagar A, Ronan R, Rebelo AL, McMahon S, Pandit A, Schlosser G., Dev Biol. March 16, 2024; 519 65-78.


Adipose tissue derived stem cell secretome induces motor and histological gains after complete spinal cord injury in Xenopus laevis and mice., Assunção-Silva RC, Pinho A, Cibrão JR, Pereira IM, Monteiro S, Silva NA, Campos J, Rebelo AL, Schlosser G, Pinto L, Pandit A, Salgado AJ., J Tissue Eng. January 1, 2024; 15 20417314231203824.   


From "self-differentiation" to organoids-the quest for the units of development., Schlosser G., Dev Genes Evol. December 10, 2023; 234 (2): 57-64.


Distinct Glycosylation Responses to Spinal Cord Injury in Regenerative and Nonregenerative Models., Ronan R, Kshirsagar A, Rebelo AL, Sunny A, Kilcoyne M, Flaherty RO, Rudd PM, Schlosser G, Saldova R, Pandit A, McMahon SS., J Proteome Res. June 3, 2022; 21 (6): 1449-1466.


Eya1 protein distribution during embryonic development of Xenopus laevis., Almasoudi SH, Schlosser G., Gene Expr Patterns. December 1, 2021; 42 119213.   


Otic Neurogenesis in Xenopus laevis: Proliferation, Differentiation, and the Role of Eya1., Almasoudi SH, Schlosser G., Front Neuroanat. January 1, 2021; 15 722374.   


A gene regulatory network underlying the formation of pre-placodal ectoderm in Xenopus laevis., Maharana SK, Schlosser G., BMC Biol. July 16, 2018; 16 (1): 79.   


Six1 and Eya1 both promote and arrest neuronal differentiation by activating multiple Notch pathway genes., Riddiford N, Schlosser G., Dev Biol. November 15, 2017; 431 (2): 152-167.   


Identification of novel cis-regulatory elements of Eya1 in Xenopus laevis using BAC recombineering., Maharana SK, Pollet N, Schlosser G., Sci Rep. November 3, 2017; 7 (1): 15033.   


Evolution of the hypoxia-sensitive cells involved in amniote respiratory reflexes., Hockman D, Burns AJ, Schlosser G, Gates KP, Jevans B, Mongera A, Fisher S, Unlu G, Knapik EW, Kaufman CK, Mosimann C, Zon LI, Lancman JJ, Dong PDS, Lickert H, Tucker AS, Baker CV., Elife. April 7, 2017; 6   


Dissecting the pre-placodal transcriptome to reveal presumptive direct targets of Six1 and Eya1 in cranial placodes., Riddiford N, Schlosser G., Elife. August 31, 2016; 5   


Expression of a novel serine/threonine kinase gene, Ulk4, in neural progenitors during Xenopus laevis forebrain development., Domínguez L, Schlosser G, Shen S., Neuroscience. April 2, 2015; 290 61-79.   


Vertebrate Cranial Placodes as Evolutionary Innovations-The Ancestor's Tale., Schlosser G., Curr Top Dev Biol. January 1, 2015; 111 235-300.


Development and evolution of vertebrate cranial placodes., Schlosser G., Dev Biol. May 1, 2014; 389 (1): 1.


The evolutionary history of vertebrate cranial placodes--I: cell type evolution., Patthey C, Schlosser G, Shimeld SM., Dev Biol. May 1, 2014; 389 (1): 82-97.   


The evolutionary history of vertebrate cranial placodes II. Evolution of ectodermal patterning., Schlosser G, Patthey C, Shimeld SM., Dev Biol. May 1, 2014; 389 (1): 98-119.   


Early embryonic specification of vertebrate cranial placodes., Schlosser G., Wiley Interdiscip Rev Dev Biol. January 1, 2014; 3 (5): 349-63.


Differential distribution of competence for panplacodal and neural crest induction to non-neural and neural ectoderm., Pieper M, Ahrens K, Rink E, Peter A, Schlosser G., Development. March 1, 2012; 139 (6): 1175-87.   


Origin and segregation of cranial placodes in Xenopus laevis., Pieper M, Eagleson GW, Wosniok W, Schlosser G., Dev Biol. December 15, 2011; 360 (2): 257-75.   


Making senses development of vertebrate cranial placodes., Schlosser G., Int Rev Cell Mol Biol. January 1, 2010; 283 129-234.


Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion., Schlosser G, Awtry T, Brugmann SA, Jensen ED, Neilson K, Ruan G, Stammler A, Voelker D, Yan B, Zhang C, Klymkowsky MW, Moody SA., Dev Biol. August 1, 2008; 320 (1): 199-214.   


Do vertebrate neural crest and cranial placodes have a common evolutionary origin?, Schlosser G., Bioessays. July 1, 2008; 30 (7): 659-72.


Development of the retinotectal system in the direct-developing frog Eleutherodactylus coqui in comparison with other anurans., Schlosser G., Front Zool. June 23, 2008; 5 9.   


A simple model of co-evolutionary dynamics caused by epistatic selection., Schlosser G, Wagner GP., J Theor Biol. January 7, 2008; 250 (1): 48-65.


How old genes make a new head: redeployment of Six and Eya genes during the evolution of vertebrate cranial placodes., Schlosser G., Integr Comp Biol. September 1, 2007; 47 (3): 343-59.


Induction and specification of cranial placodes., Schlosser G., Dev Biol. June 15, 2006; 294 (2): 303-51.   


Tissues and signals involved in the induction of placodal Six1 expression in Xenopus laevis., Ahrens K, Schlosser G., Dev Biol. December 1, 2005; 288 (1): 40-59.   


Secondary neurogenesis in the brain of the African clawed frog, Xenopus laevis, as revealed by PCNA, Delta-1, Neurogenin-related-1, and NeuroD expression., Wullimann MF, Rink E, Vernier P, Schlosser G., J Comp Neurol. August 29, 2005; 489 (3): 387-402.


The evolutionary origin of neural crest and placodes., Baker CV, Schlosser G., J Exp Zool B Mol Dev Evol. July 15, 2005; 304 (4): 269-73.


Evolutionary origins of vertebrate placodes: insights from developmental studies and from comparisons with other deuterostomes., Schlosser G., J Exp Zool B Mol Dev Evol. July 15, 2005; 304 (4): 347-99.


Molecular anatomy of placode development in Xenopus laevis., Schlosser G, Ahrens K., Dev Biol. July 15, 2004; 271 (2): 439-66.   


Hypobranchial placodes in Xenopus laevis give rise to hypobranchial ganglia, a novel type of cranial ganglia., Schlosser G., Cell Tissue Res. April 1, 2003; 312 (1): 21-9.


Mosaic evolution of neural development in anurans: acceleration of spinal cord development in the direct developing frog Eleutherodactylus coqui., Schlosser G., Anat Embryol (Berl). February 1, 2003; 206 (3): 215-27.


Thyroid hormone promotes neurogenesis in the Xenopus spinal cord., Schlosser G, Koyano-Nakagawa N, Kintner C., Dev Dyn. December 1, 2002; 225 (4): 485-98.


Development and evolution of lateral line placodes in amphibians. - II. Evolutionary diversification., Schlosser G., Zoology (Jena). January 1, 2002; 105 (3): 177-93.


Development and evolution of lateral line placodes in amphibians I. Development., Schlosser G., Zoology (Jena). January 1, 2002; 105 (2): 119-46.


Limb development in a "nonmodel" vertebrate, the direct-developing frog Eleutherodactylus coqui., Hanken J, Carl TF, Richardson MK, Olsson L, Schlosser G, Osabutey CK, Klymkowsky MW., J Exp Zool. December 15, 2001; 291 (4): 375-88.


Lateral line placodes are induced during neurulation in the axolotl., Schlosser G, Northcutt RG., Dev Biol. June 1, 2001; 234 (1): 55-71.


Xenopus Eya1 demarcates all neurogenic placodes as well as migrating hypaxial muscle precursors., David R, Ahrens K, Wedlich D, Schlosser G., Mech Dev. May 1, 2001; 103 (1-2): 189-92.   


Development of neurogenic placodes in Xenopus laevis., Schlosser G, Northcutt RG., J Comp Neurol. March 6, 2000; 418 (2): 121-46.


Loss of ectodermal competence for lateral line placode formation in the direct developing frog Eleutherodactylus coqui., Schlosser G, Kintner C, Northcutt RG., Dev Biol. September 15, 1999; 213 (2): 354-69.   


Development of the retina is altered in the directly developing frog Eleutherodactylus coqui (Leptodactylidae)., Schlosser G, Roth G., Neurosci Lett. March 21, 1997; 224 (3): 153-6.


Evolution of nerve development in frogs. II. Modified development of the peripheral nervous system in the direct-developing frog Eleutherodactylus coqui (Leptodactylidae)., Schlosser G, Roth G., Brain Behav Evol. January 1, 1997; 50 (2): 94-128.


Evolution of nerve development in frogs. I. The development of the peripheral nervous system in Discoglossus pictus (Discoglossidae)., Schlosser G, Roth G., Brain Behav Evol. January 1, 1997; 50 (2): 61-93.


Distribution of cranial and rostral spinal nerves in tadpoles of the frog Discoglossus pictus (Discoglossidae)., Schlosser G, Roth G., J Morphol. November 1, 1995; 226 (2): 189-212.

???pagination.result.page??? 1