Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (58)
XB-PERS-2785

Publications By Scott E. Fraser

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???


Inhibition of Kir2.1 (KCNJ2) by the AMP-activated protein kinase., Alesutan I, Munoz C, Sopjani M, Dërmaku-Sopjani M, Michael D, Fraser S, Kemp BE, Seebohm G, Föller M, Lang F., Biochem Biophys Res Commun. May 20, 2011; 408 (4): 505-10.


Inhibition of connexin 26 by the AMP-activated protein kinase., Alesutan I, Sopjani M, Munoz C, Fraser S, Kemp BE, Föller M, Lang F., J Membr Biol. April 1, 2011; 240 (3): 151-8.


Inhibition of the heterotetrameric K+ channel KCNQ1/KCNE1 by the AMP-activated protein kinase., Alesutan I, Föller M, Sopjani M, Dërmaku-Sopjani M, Zelenak C, Fröhlich H, Velic A, Fraser S, Kemp BE, Seebohm G, Völkl H, Lang F., Mol Membr Biol. February 1, 2011; 28 (2): 79-89.


Down-regulation of Na+-coupled glutamate transporter EAAT3 and EAAT4 by AMP-activated protein kinase., Sopjani M, Alesutan I, Dërmaku-Sopjani M, Fraser S, Kemp BE, Föller M, Lang F., J Neurochem. June 1, 2010; 113 (6): 1426-35.


Regulation of Na+-coupled glucose carrier SGLT1 by AMP-activated protein kinase., Sopjani M, Bhavsar SK, Fraser S, Kemp BE, Föller M, Lang F., Mol Membr Biol. April 1, 2010; 27 (2-3): 137-44.


A uniplanar three-axis gradient set for in vivo magnetic resonance microscopy., Demyanenko AV, Zhao L, Kee Y, Nie S, Fraser SE, Tyszka JM., J Magn Reson. September 1, 2009; 200 (1): 38-48.


Formation of the dorsal marginal zone in Xenopus laevis analyzed by time-lapse microscopic magnetic resonance imaging., Papan C, Boulat B, Velan SS, Fraser SE, Jacobs RE., Dev Biol. May 1, 2007; 305 (1): 161-71.


Two-dimensional and three-dimensional time-lapse microscopic magnetic resonance imaging of Xenopus gastrulation movements using intrinsic tissue-specific contrast., Papan C, Boulat B, Velan SS, Fraser SE, Jacobs RE., Dev Dyn. February 1, 2007; 236 (2): 494-501.


Time-lapse tracing of mitotic cell divisions in the early Xenopus embryo using microscopic MRI., Papan C, Boulat B, Velan SS, Fraser SE, Jacobs RE., Dev Dyn. November 1, 2006; 235 (11): 3059-62.


Dishevelled genes mediate a conserved mammalian PCP pathway to regulate convergent extension during neurulation., Wang J, Hamblet NS, Mark S, Dickinson ME, Brinkman BC, Segil N, Fraser SE, Chen P, Wallingford JB, Wynshaw-Boris A., Development. May 1, 2006; 133 (9): 1767-78.


New tools for visualization and analysis of morphogenesis in spherical embryos., Tyszka JM, Ewald AJ, Wallingford JB, Fraser SE., Dev Dyn. December 1, 2005; 234 (4): 974-83.   


Regional requirements for Dishevelled signaling during Xenopus gastrulation: separable effects on blastopore closure, mesendoderm internalization and archenteron formation., Ewald AJ, Peyrot SM, Tyszka JM, Fraser SE, Wallingford JB., Development. December 1, 2004; 131 (24): 6195-209.   


The year(s) of the contrast agent - micro-MRI in the new millennium., Pautler RG, Fraser SE., Curr Opin Immunol. August 1, 2003; 15 (4): 385-92.


Surface imaging microscopy, an automated method for visualizing whole embryo samples in three dimensions at high resolution., Ewald AJ, McBride H, Reddington M, Fraser SE, Kerschmann R., Dev Dyn. November 1, 2002; 225 (3): 369-75.


Convergent extension: the molecular control of polarized cell movement during embryonic development., Wallingford JB, Fraser SE, Harland RM., Dev Cell. June 1, 2002; 2 (6): 695-706.


Tracing transgene expression in living zebrafish embryos., Köster RW, Fraser SE., Dev Biol. May 15, 2001; 233 (2): 329-46.   


Calcium signaling during convergent extension in Xenopus., Wallingford JB, Ewald AJ, Harland RM, Fraser SE., Curr Biol. May 1, 2001; 11 (9): 652-61.   


Dishevelled controls cell polarity during Xenopus gastrulation., Wallingford JB, Rowning BA, Vogeli KM, Rothbächer U, Fraser SE, Harland RM., Nature. May 4, 2000; 405 (6782): 81-5.


In vivo visualization of gene expression using magnetic resonance imaging., Louie AY, Hüber MM, Ahrens ET, Rothbächer U, Moats R, Jacobs RE, Fraser SE, Meade TJ., Nat Biotechnol. March 1, 2000; 18 (3): 321-5.


Dishevelled phosphorylation, subcellular localization and multimerization regulate its role in early embryogenesis., Rothbächer U, Laurent MN, Deardorff MA, Klein PS, Cho KW, Fraser SE., EMBO J. March 1, 2000; 19 (5): 1010-22.


A model for MRI contrast enhancement using T1 agents., Ahrens ET, Rothbächer U, Jacobs RE, Fraser SE., Proc Natl Acad Sci U S A. July 21, 1998; 95 (15): 8443-8.


Fluorescently detectable magnetic resonance imaging agents., Hüber MM, Staubli AB, Kustedjo K, Gray MH, Shih J, Fraser SE, Jacobs RE, Meade TJ., Bioconjug Chem. January 1, 1998; 9 (2): 242-9.


Specification of the zebrafish nervous system by nonaxial signals., Woo K, Fraser SE., Science. July 11, 1997; 277 (5323): 254-7.


The cellular patterns of BDNF and trkB expression suggest multiple roles for BDNF during Xenopus visual system development., Cohen-Cory S, Escandón E, Fraser SE., Dev Biol. October 10, 1996; 179 (1): 102-15.   


Effects of brain-derived neurotrophic factor on optic axon branching and remodelling in vivo., Cohen-Cory S, Fraser SE., Nature. November 9, 1995; 378 (6553): 192-6.


Imaging neuronal development with magnetic resonance imaging (NMR) microscopy., Jacobs RE, Fraser SE., J Neurosci Methods. October 1, 1994; 54 (2): 189-96.


A dual embryonic origin for vertebrate mechanoreceptors., Collazo A, Fraser SE, Mabee PM., Science. April 15, 1994; 264 (5157): 426-30.


Rapid remodeling of retinal arbors in the tectum with and without blockade of synaptic transmission., O'Rourke NA, Cline HT, Fraser SE., Neuron. April 1, 1994; 12 (4): 921-34.


BDNF in the development of the visual system of Xenopus., Cohen-Cory S, Fraser SE., Neuron. April 1, 1994; 12 (4): 747-61.


Magnetic resonance microscopy of embryonic cell lineages and movements., Jacobs RE, Fraser SE., Science. February 4, 1994; 263 (5147): 681-4.


Structure and expression of the nicotinic acetylcholine receptor beta subunit of Xenopus laevis., Kullberg RW, Zheng YC, Todt W, Owens JL, Fraser SE, Mandel G., Recept Channels. January 1, 1994; 2 (1): 23-31.


Proportion of proliferative cells in the tadpole retina is increased after embryonic lesion., Wetts R, Kook JH, Fraser SE., Dev Dyn. September 1, 1993; 198 (1): 54-64.


Vital dye labelling of Xenopus laevis trunk neural crest reveals multipotency and novel pathways of migration., Collazo A, Bronner-Fraser M, Fraser SE., Development. June 1, 1993; 118 (2): 363-76.


Microinjection of fluorescent tracers to study neural cell lineages., Wetts R, Fraser SE., Development. January 1, 1991; Suppl 2 1-8.   


Cell migration in the formation of the pronephric duct in Xenopus laevis., Lynch K, Fraser SE., Dev Biol. December 1, 1990; 142 (2): 283-92.


Acetylcholine receptor clustering is triggered by a change in the density of a nonreceptor molecule., Stollberg J, Fraser SE., J Cell Biol. November 1, 1990; 111 (5 Pt 1): 2029-39.


In situ analysis of neuronal dynamics and positional cues in the patterning of nerve connections., Fraser SE, O'Rourke NA., J Exp Biol. October 1, 1990; 153 61-70.


Dynamic changes in optic fiber terminal arbors lead to retinotopic map formation: an in vivo confocal microscopic study., O'Rourke NA, Fraser SE., Neuron. August 1, 1990; 5 (2): 159-71.


Local accumulation of acetylcholine receptors is neither necessary nor sufficient to induce cluster formation., Stollberg J, Fraser SE., J Neurosci. January 1, 1990; 10 (1): 247-55.


Competitive and positional cues in the patterning of nerve connections., Fraser SE, Perkel DH., J Neurobiol. January 1, 1990; 21 (1): 51-72.


Cell lineage analysis reveals multipotent precursors in the ciliary margin of the frog retina., Wetts R, Serbedzija GN, Fraser SE., Dev Biol. November 1, 1989; 136 (1): 254-63.


Electric Field-Induced Redistribution of ACh Receptors on Cultured Muscle Cells: Electromigration, Diffusion, and Aggregation., Stollberg J, Fraser SE., Biol Bull. April 1, 1989; 176 (2S): 157-163.


Gradual appearance of a regulated retinotectal projection pattern in Xenopus laevis., O'Rourke NA, Fraser SE., Dev Biol. March 1, 1989; 132 (1): 251-65.


Slow intermixing of cells during Xenopus embryogenesis contributes to the consistency of the blastomere fate map., Wetts R, Fraser SE., Development. January 1, 1989; 105 (1): 9-15.


Acetylcholine receptors and concanavalin A-binding sites on cultured Xenopus muscle cells: electrophoresis, diffusion, and aggregation., Stollberg J, Fraser SE., J Cell Biol. October 1, 1988; 107 (4): 1397-408.


Alterations in the Xenopus retinotectal projection by antibodies to Xenopus N-CAM., Fraser SE, Carhart MS, Murray BA, Chuong CM, Edelman GM., Dev Biol. September 1, 1988; 129 (1): 217-30.


Mapping of neural crest pathways in Xenopus laevis using inter- and intra-specific cell markers., Krotoski DM, Fraser SE, Bronner-Fraser M., Dev Biol. May 1, 1988; 127 (1): 119-32.


Multipotent precursors can give rise to all major cell types of the frog retina., Wetts R, Fraser SE., Science. March 4, 1988; 239 (4844): 1142-5.


A physiological measure of shifting connections in the Rana pipiens retinotectal system., Fraser SE, Hunt RK., J Embryol Exp Morphol. June 1, 1986; 94 149-61.


Pattern regulation in the eyebud of Xenopus studied with a vital-dye fiber-tracing technique., O'Rourke NA, Fraser SE., Dev Biol. April 1, 1986; 114 (2): 277-88.

???pagination.result.page??? 1 2 ???pagination.result.next???