Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (25)
XB-PERS-2811

Publications By Kara G. Pratt

???pagination.result.count???

???pagination.result.page??? 1


OCULAR NECESSITIES: A NEUROETHOLOGICAL PERSPECTIVE ON VERTEBRATE VISUAL DEVELOPMENT., Hunt JE, Pratt KG, Molnar Z., Brain Behav Evol. March 6, 2024;


Serotonin strengthens a developing glutamatergic synapse through a PI3K-dependent mechanism., Udoh UG, Bruno JR, Osborn PO, Pratt KG., J Neurosci. February 7, 2024; 44 (6):


Protocol for measuring visual preferences of freely swimming Xenopus laevis tadpoles., Udoh UG, Zheng K, Pratt KG., STAR Protoc. September 15, 2023; 4 (3): 102422.   


A circadian-dependent preference for light displayed by Xenopus tadpoles is modulated by serotonin., Bruno JR, Udoh UG, Landen JG, Osborn PO, Asher CJ, Hunt JE, Pratt KG., iScience. November 18, 2022; 25 (11): 105375.   


Electrophysiological Approaches to Studying Normal and Abnormal Retinotectal Circuit Development in the Xenopus Tadpole., Pratt KG., Cold Spring Harb Protoc. November 1, 2021; 2021 (11):


An Innate Color Preference Displayed by Xenopus Tadpoles Is Persistent and Requires the Tegmentum., Hunt JE, Bruno JR, Pratt KG., Front Behav Neurosci. May 12, 2020; 14 71.   


Presenilin Regulates Retinotectal Synapse Formation through EphB2 Receptor Processing., Liu Z, Thakar A, Santoro SW, Pratt KG., Dev Neurobiol. December 1, 2018; 78 (12): 1171-1190.


Preparations and Protocols for Whole Cell Patch Clamp Recording of Xenopus laevis Tectal Neurons., Liu Z, Donnelly KB, Pratt KG., J Vis Exp. March 15, 2018; (133):


Early development and function of the Xenopus tadpole retinotectal circuit., Liu Z, Hamodi AS, Pratt KG., Curr Opin Neurobiol. December 1, 2016; 41 17-23.


An NMDA receptor-dependent mechanism for subcellular segregation of sensory inputs in the tadpole optic tectum., Hamodi AS, Liu Z, Pratt KG., Elife. November 23, 2016; 5   


Fragile X mental retardation protein knockdown in the developing Xenopus tadpole optic tectum results in enhanced feedforward inhibition and behavioral deficits., Truszkowski TL, James EJ, Hasan M, Wishard TJ, Liu Z, Pratt KG, Cline HT, Aizenman CD., Neural Dev. August 8, 2016; 11 (1): 14.   


A population of gap junction-coupled neurons drives recurrent network activity in a developing visual circuit., Liu Z, Ciarleglio CM, Hamodi AS, Aizenman CD, Pratt KG., J Neurophysiol. March 1, 2016; 115 (3): 1477-86.


The horizontal brain slice preparation: a novel approach for visualizing and recording from all layers of the tadpole tectum., Hamodi AS, Pratt KG., J Neurophysiol. January 1, 2015; 113 (1): 400-7.


Region-specific regulation of voltage-gated intrinsic currents in the developing optic tectum of the Xenopus tadpole., Hamodi AS, Pratt KG., J Neurophysiol. October 1, 2014; 112 (7): 1644-55.


Modeling human neurodevelopmental disorders in the Xenopus tadpole: from mechanisms to therapeutic targets., Pratt KG, Khakhalin AS., Dis Model Mech. September 1, 2013; 6 (5): 1057-65.   


Presenilin 1 regulates homeostatic synaptic scaling through Akt signaling., Pratt KG, Zimmerman EC, Cook DG, Sullivan JM., Nat Neurosci. August 14, 2011; 14 (9): 1112-4.   


A novel role for {gamma}-secretase: selective regulation of spontaneous neurotransmitter release from hippocampal neurons., Pratt KG, Zhu P, Watari H, Cook DG, Sullivan JM., J Neurosci. January 19, 2011; 31 (3): 899-906.


Multisensory integration in mesencephalic trigeminal neurons in Xenopus tadpoles., Pratt KG, Aizenman CD., J Neurophysiol. July 1, 2009; 102 (1): 399-412.


Visual avoidance in Xenopus tadpoles is correlated with the maturation of visual responses in the optic tectum., Dong W, Lee RH, Xu H, Yang S, Pratt KG, Cao V, Song YK, Nurmikko A, Aizenman CD., J Neurophysiol. February 1, 2009; 101 (2): 803-15.


There's more than one way to scale a synapse., Aizenman CD, Pratt KG., Neuron. June 12, 2008; 58 (5): 651-3.


Development and spike timing-dependent plasticity of recurrent excitation in the Xenopus optic tectum., Pratt KG, Dong W, Aizenman CD., Nat Neurosci. April 1, 2008; 11 (4): 467-75.


Dynamics underlying synaptic gain between pairs of cortical pyramidal neurons., Pratt KG, Taft CE, Burbea M, Turrigiano GG., Dev Neurobiol. February 1, 2008; 68 (2): 143-51.


Homeostatic regulation of intrinsic excitability and synaptic transmission in a developing visual circuit., Pratt KG, Aizenman CD., J Neurosci. August 1, 2007; 27 (31): 8268-77.


Activity-dependent remodeling of presynaptic inputs by postsynaptic expression of activated CaMKII., Pratt KG, Watt AJ, Griffith LC, Nelson SB, Turrigiano GG., Neuron. July 17, 2003; 39 (2): 269-81.


The neuronal growth-associated protein GAP-43 interacts with rabaptin-5 and participates in endocytosis., Neve RL, Coopersmith R, McPhie DL, Santeufemio C, Pratt KG, Murphy CJ, Lynn SD., J Neurosci. October 1, 1998; 18 (19): 7757-67.

???pagination.result.page??? 1