???pagination.result.count???
Whole-Mount Immunocytochemistry in Xenopus. , Klymkowsky MW ., Cold Spring Harb Protoc. January 2, 2018; 2018 (1):
TSPAN12 Is a Norrin Co-receptor that Amplifies Frizzled4 Ligand Selectivity and Signaling. , Lai MB, Zhang C, Shi J, Johnson V, Khandan L, McVey J, Klymkowsky MW , Chen Z, Junge HJ., Cell Rep. June 27, 2017; 19 (13): 2809-2822.
Identifying domains of EFHC1 involved in ciliary localization, ciliogenesis, and the regulation of Wnt signaling. , Zhao Y, Shi J, Winey M, Klymkowsky MW ., Dev Biol. March 15, 2016; 411 (2): 257-265.
Centrin-2 (Cetn2) mediated regulation of FGF/FGFR gene expression in Xenopus. , Shi J, Zhao Y, Vonderfecht T, Winey M, Klymkowsky MW ., Sci Rep. May 27, 2015; 5 10283.
Chibby functions in Xenopus ciliary assembly, embryonic development, and the regulation of gene expression. , Shi J, Zhao Y, Galati D, Winey M, Klymkowsky MW ., Dev Biol. November 15, 2014; 395 (2): 287-98.
Turning randomness into meaning at the molecular level using Muller's morphs. , Henson K, Cooper MM, Klymkowsky MW ., Biol Open. April 15, 2012; 1 (4): 405-10.
sizzled function and secreted factor network dynamics. , Shi J, Zhang H , Dowell RD , Klymkowsky MW ., Biol Open. March 15, 2012; 1 (3): 286-94.
A maternally established SoxB1/SoxF axis is a conserved feature of chordate germ layer patterning. , Cattell MV, Garnett AT, Klymkowsky MW , Medeiros DM ., Evol Dev. January 1, 2012; 14 (1): 104-15.
Mitochondrial activity, embryogenesis, and the dialogue between the big and little brains of the cell. , Klymkowsky MW ., Mitochondrion. September 1, 2011; 11 (5): 814-9.
Snail2 controls mesodermal BMP/Wnt induction of neural crest. , Shi J, Severson C, Yang J , Wedlich D , Klymkowsky MW ., Development. August 1, 2011; 138 (15): 3135-45.
Regulation of TCF3 by Wnt-dependent phosphorylation during vertebrate axis specification. , Hikasa H, Ezan J, Itoh K, Li X, Klymkowsky MW , Sokol SY ., Dev Cell. October 19, 2010; 19 (4): 521-32.
Mechanisms driving neural crest induction and migration in the zebrafish and Xenopus laevis. , Klymkowsky MW , Rossi CC, Artinger KB., Cell Adh Migr. January 1, 2010; 4 (4): 595-608.
Unexpected functional redundancy between Twist and Slug ( Snail2) and their feedback regulation of NF-kappaB via Nodal and Cerberus. , Zhang C, Klymkowsky MW ., Dev Biol. July 15, 2009; 331 (2): 340-9.
Epithelial-mesenchymal transition: a cancer researcher's conceptual friend and foe. , Klymkowsky MW , Savagner P., Am J Pathol. May 1, 2009; 174 (5): 1588-93.
Eya1 and Six1 promote neurogenesis in the cranial placodes in a SoxB1-dependent fashion. , Schlosser G , Awtry T, Brugmann SA , Jensen ED, Neilson K , Ruan G, Stammler A, Voelker D, Yan B , Zhang C, Klymkowsky MW , Moody SA ., Dev Biol. August 1, 2008; 320 (1): 199-214.
Rohon-Beard sensory neurons are induced by BMP4 expressing non- neural ectoderm in Xenopus laevis. , Rossi CC, Hernandez-Lagunas L, Zhang C, Choi IF, Kwok L, Klymkowsky M , Artinger KB., Dev Biol. February 15, 2008; 314 (2): 351-61.
The Sox axis, Nodal signaling, and germ layer specification. , Zhang C, Klymkowsky MW ., Differentiation. July 1, 2007; 75 (6): 536-45.
An NF-kappaB and slug regulatory loop active in early vertebrate mesoderm. , Zhang C, Carl TF, Trudeau ED, Simmet T, Klymkowsky MW ., PLoS One. December 27, 2006; 1 e106.
SOX7 and SOX18 are essential for cardiogenesis in Xenopus. , Zhang C, Basta T, Klymkowsky MW ., Dev Dyn. December 1, 2005; 234 (4): 878-91.
SOX7 is an immediate-early target of VegT and regulates Nodal-related gene expression in Xenopus. , Zhang C, Basta T, Fawcett SR, Klymkowsky MW ., Dev Biol. February 15, 2005; 278 (2): 526-41.
Repression of nodal expression by maternal B1-type SOXs regulates germ layer formation in Xenopus and zebrafish. , Zhang C, Basta T, Hernandez-Lagunas L, Simpson P, Stemple DL , Artinger KB, Klymkowsky MW ., Dev Biol. September 1, 2004; 273 (1): 23-37.
Embryonic expression of Xenopus laevis SOX7. , Fawcett SR, Klymkowsky MW ., Gene Expr Patterns. January 1, 2004; 4 (1): 29-33.
The beta-catenin/ VegT-regulated early zygotic gene Xnr5 is a direct target of SOX3 regulation. , Zhang C, Basta T, Jensen ED, Klymkowsky MW ., Development. December 1, 2003; 130 (23): 5609-24.
Limb development in a "nonmodel" vertebrate, the direct-developing frog Eleutherodactylus coqui. , Hanken J , Carl TF, Richardson MK, Olsson L , Schlosser G , Osabutey CK, Klymkowsky MW ., J Exp Zool. December 15, 2001; 291 (4): 375-88.
Cadherins and catenins, Wnts and SOXs: embryonic patterning in Xenopus. , St Amand AL, Klymkowsky MW ., Int Rev Cytol. January 1, 2001; 203 291-355.
Regulation of Wnt signaling by Sox proteins: XSox17 alpha/beta and XSox3 physically interact with beta-catenin. , Zorn AM , Barish GD, Williams BO, Lavender P, Klymkowsky MW , Varmus HE., Mol Cell. October 1, 1999; 4 (4): 487-98.
Membrane-anchored plakoglobins have multiple mechanisms of action in Wnt signaling. , Klymkowsky MW , Williams BO, Barish GD, Varmus HE, Vourgourakis YE., Mol Biol Cell. October 1, 1999; 10 (10): 3151-69.
Inhibition of neural crest migration in Xenopus using antisense slug RNA. , Carl TF, Dufton C, Hanken J , Klymkowsky MW ., Dev Biol. September 1, 1999; 213 (1): 101-15.
Plakophilin, armadillo repeats, and nuclear localization. , Klymkowsky MW ., Microsc Res Tech. April 1, 1999; 45 (1): 43-54.
Intermediate filament organization during oogenesis and early development in the clawed frog, Xenopus laevis. , Gard DL , Klymkowsky MW ., Subcell Biochem. January 1, 1998; 31 35-70.
Cytoplasmically anchored plakoglobin induces a WNT-like phenotype in Xenopus. , Merriam JM, Rubenstein AB, Klymkowsky MW ., Dev Biol. May 1, 1997; 185 (1): 67-81.
Localizing the adhesive and signaling functions of plakoglobin. , Rubenstein A, Merriam J, Klymkowsky MW ., Dev Genet. January 1, 1997; 20 (2): 91-102.
A nontetrameric species is the major soluble form of keratin in Xenopus oocytes and rabbit reticulocyte lysates. , Bachant JB, Klymkowsky MW ., J Cell Biol. January 1, 1996; 132 (1-2): 153-65.
The body language of cells: the intimate connection between cell adhesion and behavior. , Klymkowsky MW , Parr B., Cell. October 6, 1995; 83 (1): 5-8.
Anterior axis duplication in Xenopus induced by the over-expression of the cadherin-binding protein plakoglobin. , Karnovsky A, Klymkowsky MW ., Proc Natl Acad Sci U S A. May 9, 1995; 92 (10): 4522-6.
Disruption of intermediate filament organization leads to structural defects at the intersomite junction in Xenopus myotomal muscle. , Cary RB, Klymkowsky MW ., Development. April 1, 1995; 121 (4): 1041-52.
Intermediate filament organization, reorganization, and function in the clawed frog Xenopus. , Klymkowsky MW ., Curr Top Dev Biol. January 1, 1995; 31 455-86.
Morphogenesis and the cytoskeleton: studies of the Xenopus embryo. , Klymkowsky MW , Karnovsky A., Dev Biol. October 1, 1994; 165 (2): 372-84.
Differential organization of desmin and vimentin in muscle is due to differences in their head domains. , Cary RB, Klymkowsky MW ., J Cell Biol. July 1, 1994; 126 (2): 445-56.
Vimentin's tail interacts with actin-containing structures in vivo. , Cary RB, Klymkowsky MW , Evans RM, Domingo A, Dent JA, Backhus LE., J Cell Sci. June 1, 1994; 107 ( Pt 6) 1609-22.
Desmin organization during the differentiation of the dorsal myotome in Xenopus laevis. , Cary RB, Klymkowsky MW ., Differentiation. April 1, 1994; 56 (1-2): 31-8.
Type II collagen distribution during cranial development in Xenopus laevis. , Seufert DW , Hanken J , Klymkowsky MW ., Anat Embryol (Berl). January 1, 1994; 189 (1): 81-9.
Host cell factors controlling vimentin organization in the Xenopus oocyte. , Dent JA, Cary RB, Bachant JB, Domingo A, Klymkowsky MW ., J Cell Biol. November 1, 1992; 119 (4): 855-66.
Evidence that the deep keratin filament systems of the Xenopus embryo act to ensure normal gastrulation. , Klymkowsky MW , Shook DR , Maynell LA., Proc Natl Acad Sci U S A. September 15, 1992; 89 (18): 8736-40.
Cytokeratin phosphorylation, cytokeratin filament severing and the solubilization of the maternal mRNA Vg1. , Klymkowsky MW , Maynell LA, Nislow C., J Cell Biol. August 1, 1991; 114 (4): 787-97.
Whole-mount staining of Xenopus and other vertebrates. , Klymkowsky MW , Hanken J ., Methods Cell Biol. January 1, 1991; 36 419-41.
The appearance of acetylated alpha-tubulin during early development and cellular differentiation in Xenopus. , Chu DT, Klymkowsky MW ., Dev Biol. November 1, 1989; 136 (1): 104-17.
MPF-induced breakdown of cytokeratin filament organization in the maturing Xenopus oocyte depends upon the translation of maternal mRNAs. , Klymkowsky MW , Maynell LA., Dev Biol. August 1, 1989; 134 (2): 479-85.
A whole-mount immunocytochemical analysis of the expression of the intermediate filament protein vimentin in Xenopus. , Dent JA, Polson AG, Klymkowsky MW ., Development. January 1, 1989; 105 (1): 61-74.
Polar asymmetry in the organization of the cortical cytokeratin system of Xenopus laevis oocytes and embryos. , Klymkowsky MW , Maynell LA, Polson AG., Development. July 1, 1987; 100 (3): 543-57.