Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (70)
XB-PERS-3087

Publications By Agustin González

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???


Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis., Morona R, Bandín S, López JM, Moreno N, González A., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.   


Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes., Jiménez S, López JM, Lozano D, Morona R, González A, Moreno N., Brain Struct Funct. September 1, 2020; 225 (7): 2239-2269.


Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis., Moreno N, González A., Front Neuroanat. March 27, 2017; 11 24.   


Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis., Morona R, Ferran JL, Puelles L, González A., J Comp Neurol. March 1, 2017; 525 (4): 715-752.   


Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis., López JM, Morales L, González A., Brain Behav Evol. January 1, 2016; 88 (2): 127-146.


Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach., Domínguez L, González A, Moreno N., Front Neuroanat. February 3, 2015; 9 3.   


Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis., Bandín S, Morona R, González A., Front Neuroanat. February 3, 2015; 9 107.   


Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis., Bandín S, Morona R, López JM, Moreno N, González A., J Chem Neuroanat. May 1, 2014; 57-58 24-41.


Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions., Domínguez L, González A, Moreno N., J Comp Neurol. April 1, 2014; 522 (5): 1102-31.   


Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development., Bandín S, Morona R, Moreno N, González A., Front Neuroanat. December 24, 2013; 7 48.   


Islet-1 immunoreactivity in the developing retina of Xenopus laevis., Álvarez-Hernán G, Bejarano-Escobar R, Morona R, González A, Martín-Partido G, Francisco-Morcillo J., ScientificWorldJournal. November 11, 2013; 2013 740420.   


Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions., Domínguez L, Morona R, González A, Moreno N., J Comp Neurol. March 1, 2013; 521 (4): 725-59.   


Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development., Morona R, González A., J Comp Neurol. January 1, 2013; 521 (1): 79-108.   


Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians., Moreno N, Morona R, López JM, Domínguez L, Joven A, Bandín S, González A., J Comp Neurol. February 1, 2012; 520 (2): 330-63.


Homeostatic NMDA receptor down-regulation via brain derived neurotrophic factor and nitric oxide-dependent signalling in cortical but not in hippocampal neurons., Sandoval R, González A, Caviedes A, Pancetti F, Smalla KH, Kaehne T, Michea L, Gundelfinger ED, Wyneken U., J Neurochem. September 1, 2011; 118 (5): 760-72.


Embryonic genoarchitecture of the pretectum in Xenopus laevis: a conserved pattern in tetrapods., Morona R, Ferran JL, Puelles L, González A., J Comp Neurol. April 15, 2011; 519 (6): 1024-50.


Ontogenetic distribution of the transcription factor nkx2.2 in the developing forebrain of Xenopus laevis., Domínguez L, González A, Moreno N., Front Neuroanat. March 2, 2011; 5 11.   


Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system., López JM, Morona R, González A., J Chem Neuroanat. December 1, 2010; 40 (4): 325-38.


Sonic hedgehog expression during Xenopus laevis forebrain development., Domínguez L, González A, Moreno N., Dev Biol. August 6, 2010; 1347 19-32.   


Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians., Morona R, González A., J Comp Neurol. August 10, 2009; 515 (5): 503-37.


Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: further support for newly identified subdivisions., Morona R, González A., J Comp Neurol. November 10, 2008; 511 (2): 187-220.


Spatio-temporal expression of Pax6 in Xenopus forebrain., Moreno N, Rétaux S, González A., Brain Res. November 6, 2008; 1239 92-9.   


Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus., Moreno N, Domínguez L, Rétaux S, González A., Neuroscience. July 17, 2008; 154 (4): 1423-39.


Anuran olfactory bulb organization: embryology, neurochemistry and hodology., Moreno N, Morona R, López JM, Dominguez L, Muñoz M, González A., Brain Res Bull. March 18, 2008; 75 (2-4): 241-5.


Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments., Moreno N, González A, Rétaux S., Dev Neurobiol. March 1, 2008; 68 (4): 504-20.   


Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry., López JM, Morona R, Moreno N, Domínguez L, González A., Neurosci Lett. September 25, 2007; 425 (2): 73-7.


Development of the vomeronasal amygdala in anuran amphibians: hodological, neurochemical, and gene expression characterization., Moreno N, González A., J Comp Neurol. August 20, 2007; 503 (6): 815-31.


Spatiotemporal sequence of appearance of NPFF-immunoreactive structures in the developing central nervous system of Xenopus laevis., López JM, Moreno N, Morona R, Muñoz M, González A., Peptides. May 1, 2006; 27 (5): 1036-53.


Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Xenopus laevis., Morona R, Moreno N, López JM, González A., J Comp Neurol. February 10, 2006; 494 (5): 763-83.


Colocalization of nitric oxide synthase and monoamines in neurons of the amphibian brain., López JM, Moreno N, Morona R, Muñoz M, González A., Brain Res Bull. September 15, 2005; 66 (4-6): 555-9.


Calbindin-D28k immunoreactivity in the spinal cord of Xenopus laevis and its participation in ascending and descending projections., Morona R, Moreno N, López JM, Muñoz M, Ten Donkelaar HJ, González A., Brain Res Bull. September 15, 2005; 66 (4-6): 550-4.


Lateral and medial amygdala of anuran amphibians and their relation to olfactory and vomeronasal information., Moreno N, Morona R, López JM, Muñoz M, González A., Brain Res Bull. September 15, 2005; 66 (4-6): 332-6.


Central amygdala in anuran amphibians: neurochemical organization and connectivity., Moreno N, González A., J Comp Neurol. August 15, 2005; 489 (1): 69-91.


LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis., Moreno N, Bachy I, Rétaux S, González A., J Comp Neurol. May 9, 2005; 485 (3): 240-54.


Localization and connectivity of the lateral amygdala in anuran amphibians., Moreno N, González A., J Comp Neurol. November 8, 2004; 479 (2): 130-48.   


LIM-homeodomain genes as developmental and adult genetic markers of Xenopus forebrain functional subdivisions., Moreno N, Bachy I, Rétaux S, González A., J Comp Neurol. April 19, 2004; 472 (1): 52-72.   


Pallial origin of mitral cells in the olfactory bulbs of Xenopus., Moreno N, Bachy I, Rétaux S, González A., Neuroreport. December 19, 2003; 14 (18): 2355-8.


Hodological characterization of the medial amygdala in anuran amphibians., Moreno N, González A., J Comp Neurol. November 17, 2003; 466 (3): 389-408.


Comparative analysis of neuropeptide FF-like immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians., Crespo M, Moreno N, López JM, González A., J Chem Neuroanat. January 1, 2003; 25 (1): 53-71.


Choline acetyltransferase immunoreactivity in the developing brain of Xenopus laevis., López JM, Smeets WJ, González A., J Comp Neurol. November 25, 2002; 453 (4): 418-34.   


Expression pattern of the homeobox protein NKX2-1 in the developing Xenopus forebrain., González A, López JM, Marín O., Brain Res Gene Expr Patterns. October 1, 2002; 1 (3-4): 181-5.


Localization of choline acetyltransferase in the developing and adult retina of Xenopus laevis., López JM, Moreno N, González A., Neurosci Lett. September 13, 2002; 330 (1): 61-4.


Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs., Sánchez-Camacho C, Martín O, Ten Donkelaar HJ, González A., J Comp Neurol. April 22, 2002; 446 (1): 11-24.


Ontogeny of NADPH diaphorase/nitric oxide synthase reactivity in the brain of Xenopus laevis., López JM, González A., J Comp Neurol. March 25, 2002; 445 (1): 59-77.


Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians., Sánchez-Camacho C, Marín O, López JM, Moreno N, Smeets WJ, ten Donkelaar HJ, González A., Brain Res Bull. February 1, 2002; 57 (3-4): 325-30.


Regional expression of the homeobox gene NKX2-1 defines pallidal and interneuronal populations in the basal ganglia of amphibians., González A, López JM, Sánchez-Camacho C, Marín O., Neuroscience. January 1, 2002; 114 (3): 567-75.


Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord., Sánchez-Camacho C, Marín O, Smeets WJ, Ten Donkelaar HJ, González A., J Comp Neurol. May 28, 2001; 434 (2): 209-32.


Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin., Sánchez-Camacho C, Marín O, Ten Donkelaar HJ, González A., J Comp Neurol. May 28, 2001; 434 (2): 186-208.


Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians., Marín O, Smeets WJ, Muñoz M, Sanchez-Camacho C, Peña JJ, Lopez JM, González A., Eur J Morphol. April 1, 1999; 37 (2-3): 155-9.


Basal ganglia organization in amphibians: chemoarchitecture., Marín O, Smeets WJ, González A., J Comp Neurol. March 16, 1998; 392 (3): 285-312.   

???pagination.result.page??? 1 2 ???pagination.result.next???