???pagination.result.count???
Amphibian thalamic nuclear organization during larval development and in the adult frog Xenopus laevis: Genoarchitecture and hodological analysis. , Morona R, Bandín S, López JM, Moreno N , González A ., J Comp Neurol. October 1, 2020; 528 (14): 2361-2403.
Analysis of pallial/cortical interneurons in key vertebrate models of Testudines, Anurans and Polypteriform fishes. , Jiménez S, López JM, Lozano D, Morona R, González A , Moreno N ., Brain Struct Funct. September 1, 2020; 225 (7): 2239-2269.
Pattern of Neurogenesis and Identification of Neuronal Progenitor Subtypes during Pallial Development in Xenopus laevis. , Moreno N , González A ., Front Neuroanat. March 27, 2017; 11 24.
Gene expression analysis of developing cell groups in the pretectal region of Xenopus laevis. , Morona R, Ferran JL, Puelles L, González A ., J Comp Neurol. March 1, 2017; 525 (4): 715-752.
Spatiotemporal Development of the Orexinergic (Hypocretinergic) System in the Central Nervous System of Xenopus laevis. , López JM, Morales L, González A ., Brain Behav Evol. January 1, 2016; 88 (2): 127-146.
Patterns of hypothalamic regionalization in amphibians and reptiles: common traits revealed by a genoarchitectonic approach. , Domínguez L, González A , Moreno N ., Front Neuroanat. February 3, 2015; 9 3.
Prepatterning and patterning of the thalamus along embryonic development of Xenopus laevis. , Bandín S, Morona R, González A ., Front Neuroanat. February 3, 2015; 9 107.
Immunohistochemical analysis of Pax6 and Pax7 expression in the CNS of adult Xenopus laevis. , Bandín S, Morona R, López JM, Moreno N , González A ., J Chem Neuroanat. May 1, 2014; 57-58 24-41.
Characterization of the hypothalamus of Xenopus laevis during development. II. The basal regions. , Domínguez L, González A , Moreno N ., J Comp Neurol. April 1, 2014; 522 (5): 1102-31.
Regional expression of Pax7 in the brain of Xenopus laevis during embryonic and larval development. , Bandín S, Morona R, Moreno N , González A ., Front Neuroanat. December 24, 2013; 7 48.
Islet-1 immunoreactivity in the developing retina of Xenopus laevis. , Álvarez-Hernán G, Bejarano-Escobar R, Morona R, González A , Martín-Partido G, Francisco-Morcillo J., ScientificWorldJournal. November 11, 2013; 2013 740420.
Characterization of the hypothalamus of Xenopus laevis during development. I. The alar regions. , Domínguez L, Morona R, González A , Moreno N ., J Comp Neurol. March 1, 2013; 521 (4): 725-59.
Pattern of calbindin-D28k and calretinin immunoreactivity in the brain of Xenopus laevis during embryonic and larval development. , Morona R, González A ., J Comp Neurol. January 1, 2013; 521 (1): 79-108.
Characterization of the bed nucleus of the stria terminalis in the forebrain of anuran amphibians. , Moreno N , Morona R, López JM, Domínguez L, Joven A, Bandín S, González A ., J Comp Neurol. February 1, 2012; 520 (2): 330-63.
Homeostatic NMDA receptor down-regulation via brain derived neurotrophic factor and nitric oxide-dependent signalling in cortical but not in hippocampal neurons. , Sandoval R, González A , Caviedes A, Pancetti F, Smalla KH, Kaehne T, Michea L, Gundelfinger ED, Wyneken U., J Neurochem. September 1, 2011; 118 (5): 760-72.
Embryonic genoarchitecture of the pretectum in Xenopus laevis: a conserved pattern in tetrapods. , Morona R, Ferran JL, Puelles L, González A ., J Comp Neurol. April 15, 2011; 519 (6): 1024-50.
Ontogenetic distribution of the transcription factor nkx2.2 in the developing forebrain of Xenopus laevis. , Domínguez L, González A , Moreno N ., Front Neuroanat. March 2, 2011; 5 11.
Immunohistochemical localization of DARPP-32 in the brain and spinal cord of anuran amphibians and its relation with the catecholaminergic system. , López JM, Morona R, González A ., J Chem Neuroanat. December 1, 2010; 40 (4): 325-38.
Sonic hedgehog expression during Xenopus laevis forebrain development. , Domínguez L, González A , Moreno N ., Dev Biol. August 6, 2010; 1347 19-32.
Immunohistochemical localization of calbindin-D28k and calretinin in the brainstem of anuran and urodele amphibians. , Morona R, González A ., J Comp Neurol. August 10, 2009; 515 (5): 503-37.
Calbindin-D28k and calretinin expression in the forebrain of anuran and urodele amphibians: further support for newly identified subdivisions. , Morona R, González A ., J Comp Neurol. November 10, 2008; 511 (2): 187-220.
Spatio-temporal expression of Pax6 in Xenopus forebrain. , Moreno N , Rétaux S , González A ., Brain Res. November 6, 2008; 1239 92-9.
Islet1 as a marker of subdivisions and cell types in the developing forebrain of Xenopus. , Moreno N , Domínguez L, Rétaux S , González A ., Neuroscience. July 17, 2008; 154 (4): 1423-39.
Anuran olfactory bulb organization: embryology, neurochemistry and hodology. , Moreno N , Morona R, López JM, Dominguez L , Muñoz M, González A ., Brain Res Bull. March 18, 2008; 75 (2-4): 241-5.
Evidences for tangential migrations in Xenopus telencephalon: developmental patterns and cell tracking experiments. , Moreno N , González A , Rétaux S ., Dev Neurobiol. March 1, 2008; 68 (4): 504-20.
Origins of spinal cholinergic pathways in amphibians demonstrated by retrograde transport and choline acetyltransferase immunohistochemistry. , López JM, Morona R, Moreno N , Domínguez L, González A ., Neurosci Lett. September 25, 2007; 425 (2): 73-7.
Development of the vomeronasal amygdala in anuran amphibians: hodological, neurochemical, and gene expression characterization. , Moreno N , González A ., J Comp Neurol. August 20, 2007; 503 (6): 815-31.
Spatiotemporal sequence of appearance of NPFF-immunoreactive structures in the developing central nervous system of Xenopus laevis. , López JM, Moreno N , Morona R, Muñoz M, González A ., Peptides. May 1, 2006; 27 (5): 1036-53.
Immunohistochemical localization of calbindin-D28k and calretinin in the spinal cord of Xenopus laevis. , Morona R, Moreno N , López JM, González A ., J Comp Neurol. February 10, 2006; 494 (5): 763-83.
Colocalization of nitric oxide synthase and monoamines in neurons of the amphibian brain. , López JM, Moreno N , Morona R, Muñoz M, González A ., Brain Res Bull. September 15, 2005; 66 (4-6): 555-9.
Calbindin-D28k immunoreactivity in the spinal cord of Xenopus laevis and its participation in ascending and descending projections. , Morona R, Moreno N , López JM, Muñoz M, Ten Donkelaar HJ, González A ., Brain Res Bull. September 15, 2005; 66 (4-6): 550-4.
Lateral and medial amygdala of anuran amphibians and their relation to olfactory and vomeronasal information. , Moreno N , Morona R, López JM, Muñoz M, González A ., Brain Res Bull. September 15, 2005; 66 (4-6): 332-6.
Central amygdala in anuran amphibians: neurochemical organization and connectivity. , Moreno N , González A ., J Comp Neurol. August 15, 2005; 489 (1): 69-91.
LIM-homeodomain genes as territory markers in the brainstem of adult and developing Xenopus laevis. , Moreno N , Bachy I, Rétaux S , González A ., J Comp Neurol. May 9, 2005; 485 (3): 240-54.
Localization and connectivity of the lateral amygdala in anuran amphibians. , Moreno N , González A ., J Comp Neurol. November 8, 2004; 479 (2): 130-48.
LIM-homeodomain genes as developmental and adult genetic markers of Xenopus forebrain functional subdivisions. , Moreno N , Bachy I, Rétaux S , González A ., J Comp Neurol. April 19, 2004; 472 (1): 52-72.
Pallial origin of mitral cells in the olfactory bulbs of Xenopus. , Moreno N , Bachy I, Rétaux S , González A ., Neuroreport. December 19, 2003; 14 (18): 2355-8.
Hodological characterization of the medial amygdala in anuran amphibians. , Moreno N , González A ., J Comp Neurol. November 17, 2003; 466 (3): 389-408.
Comparative analysis of neuropeptide FF-like immunoreactivity in the brain of anuran (Rana perezi, Xenopus laevis) and urodele (Pleurodeles waltl) amphibians. , Crespo M, Moreno N , López JM, González A ., J Chem Neuroanat. January 1, 2003; 25 (1): 53-71.
Choline acetyltransferase immunoreactivity in the developing brain of Xenopus laevis. , López JM, Smeets WJ , González A ., J Comp Neurol. November 25, 2002; 453 (4): 418-34.
Expression pattern of the homeobox protein NKX2-1 in the developing Xenopus forebrain. , González A , López JM, Marín O., Brain Res Gene Expr Patterns. October 1, 2002; 1 (3-4): 181-5.
Localization of choline acetyltransferase in the developing and adult retina of Xenopus laevis. , López JM, Moreno N , González A ., Neurosci Lett. September 13, 2002; 330 (1): 61-4.
Descending supraspinal pathways in amphibians: III. Development of descending projections to the spinal cord in Xenopus laevis with emphasis on the catecholaminergic inputs. , Sánchez-Camacho C, Martín O, Ten Donkelaar HJ, González A ., J Comp Neurol. April 22, 2002; 446 (1): 11-24.
Ontogeny of NADPH diaphorase/nitric oxide synthase reactivity in the brain of Xenopus laevis. , López JM, González A ., J Comp Neurol. March 25, 2002; 445 (1): 59-77.
Origin and development of descending catecholaminergic pathways to the spinal cord in amphibians. , Sánchez-Camacho C, Marín O, López JM, Moreno N , Smeets WJ , ten Donkelaar HJ, González A ., Brain Res Bull. February 1, 2002; 57 (3-4): 325-30.
Regional expression of the homeobox gene NKX2-1 defines pallidal and interneuronal populations in the basal ganglia of amphibians. , González A , López JM, Sánchez-Camacho C, Marín O., Neuroscience. January 1, 2002; 114 (3): 567-75.
Descending supraspinal pathways in amphibians. II. Distribution and origin of the catecholaminergic innervation of the spinal cord. , Sánchez-Camacho C, Marín O, Smeets WJ , Ten Donkelaar HJ, González A ., J Comp Neurol. May 28, 2001; 434 (2): 209-32.
Descending supraspinal pathways in amphibians. I. A dextran amine tracing study of their cells of origin. , Sánchez-Camacho C, Marín O, Ten Donkelaar HJ, González A ., J Comp Neurol. May 28, 2001; 434 (2): 186-208.
Cholinergic and catecholaminergic neurons relay striatal information to the optic tectum in amphibians. , Marín O, Smeets WJ , Muñoz M, Sanchez-Camacho C, Peña JJ, Lopez JM, González A ., Eur J Morphol. April 1, 1999; 37 (2-3): 155-9.
Basal ganglia organization in amphibians: chemoarchitecture. , Marín O, Smeets WJ , González A ., J Comp Neurol. March 16, 1998; 392 (3): 285-312.