???pagination.result.count???
???pagination.result.page???
1
Cell lineage-guided mass spectrometry reveals increased energy metabolism and reactive oxygen species in the vertebrate organizer. , Baxi AB, Li J, Quach VM, Pade LR, Moody SA , Nemes P ., Proc Natl Acad Sci U S A. February 6, 2024; 121 (6): e2311625121.
Dilute to Enrich for Deeper Proteomics: A Yolk-Depleted Carrier for Limited Populations of Embryonic (Frog) Cells. , Pade LR, Lombard-Banek C, Li J, Nemes P ., J Proteome Res. February 2, 2024; 23 (2): 692-703.
Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates. , Baxi AB, Nemes P , Moody SA ., iScience. September 15, 2023; 26 (9): 107665.
Cell-Lineage Guided Mass Spectrometry Proteomics in the Developing (Frog) Embryo. , Baxi AB, Pade LR, Nemes P ., J Vis Exp. April 21, 2022; (182):
Capillary Electrophoresis Mass Spectrometry for Scalable Single-Cell Proteomics. , Shen B, Pade LR, Choi SB, Muñoz-LLancao P, Manzini MC, Nemes P ., Front Chem. January 1, 2022; 10 863979.
Single-Cell Mass Spectrometry of Metabolites and Proteins for Systems and Functional Biology. , Portero EP, Pade L, Li J, Choi SB, Nemes P ., Neuromethods. January 1, 2022; 184 87-114.
In Vivo Subcellular Mass Spectrometry Enables Proteo-Metabolomic Single-Cell Systems Biology in a Chordate Embryo Developing to a Normally Behaving Tadpole (X. laevis)*. , Lombard-Banek C, Li J, Portero EP, Onjiko RM, Singer CD, Plotnick DO, Al Shabeeb RQ, Nemes P ., Angew Chem Int Ed Engl. June 1, 2021; 60 (23): 12852-12858.
Altering metabolite distribution at Xenopus cleavage stages affects left- right gene expression asymmetries. , Onjiko RM, Nemes P , Moody SA ., Genesis. June 1, 2021; 59 (5-6): e23418.
Mass spectrometry based proteomics for developmental neurobiology in the amphibian Xenopus laevis. , Baxi AB, Pade LR, Nemes P ., Curr Top Dev Biol. January 1, 2021; 145 205-231.
Trace, Machine Learning of Signal Images for Trace-Sensitive Mass Spectrometry: A Case Study from Single-Cell Metabolomics. , Liu Z, Portero EP, Jian Y, Zhao Y, Onjiko RM, Zeng C, Nemes P ., Anal Chem. May 7, 2019; 91 (9): 5768-5776.
Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos. , Lombard-Banek C, Moody SA , Manzini MC, Nemes P ., Anal Chem. April 2, 2019; 91 (7): 4797-4805.
Dual cationic-anionic profiling of metabolites in a single identified cell in a live Xenopus laevis embryo by microprobe CE-ESI-MS. , Portero EP, Nemes P ., Analyst. January 28, 2019; 144 (3): 892-900.
Single-cell proteomics in complex tissues using microprobe capillary electrophoresis mass spectrometry. , Lombard-Banek C, Choi SB, Nemes P ., Methods Enzymol. January 1, 2019; 628 263-292.
Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry. , Baxi AB, Lombard-Banek C, Moody SA , Nemes P ., ACS Chem Neurosci. August 15, 2018; 9 (8): 2064-2073.
Microprobe Capillary Electrophoresis Mass Spectrometry for Single-cell Metabolomics in Live Frog (Xenopus laevis) Embryos. , Onjiko RM, Portero EP, Moody SA , Nemes P ., J Vis Exp. December 22, 2017; (130):
Metabolic Comparison of Dorsal versus Ventral Cells Directly in the Live 8-cell Frog Embryo by Microprobe Single-cell CE-ESI-MS. , Onjiko RM, Plotnick DO, Moody SA , Nemes P ., Anal Methods. September 14, 2017; 9 (34): 4964-4970.
In Situ Microprobe Single-Cell Capillary Electrophoresis Mass Spectrometry: Metabolic Reorganization in Single Differentiating Cells in the Live Vertebrate (Xenopus laevis) Embryo. , Onjiko RM, Portero EP, Moody SA , Nemes P ., Anal Chem. July 5, 2017; 89 (13): 7069-7076.
New-generation mass spectrometry expands the toolbox of cell and developmental biology. , Lombard-Banek C, Portero EP, Onjiko RM, Nemes P ., Genesis. January 1, 2017; 55 (1-2):
Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS). , Lombard-Banek C, Reddy S, Moody SA , Nemes P ., Mol Cell Proteomics. August 1, 2016; 15 (8): 2756-68.
High-Sensitivity Mass Spectrometry for Probing Gene Translation in Single Embryonic Cells in the Early Frog (Xenopus) Embryo. , Lombard-Banek C, Moody SA , Nemes P ., Front Cell Dev Biol. June 24, 2016; 4 100.
Single-cell mass spectrometry with multi-solvent extraction identifies metabolic differences between left and right blastomeres in the 8-cell frog (Xenopus) embryo. , Onjiko RM, Morris SE, Moody SA , Nemes P ., Analyst. June 21, 2016; 141 (12): 3648-56.
Single-Cell Mass Spectrometry for Discovery Proteomics: Quantifying Translational Cell Heterogeneity in the 16-Cell Frog (Xenopus) Embryo. , Lombard-Banek C, Moody SA , Nemes P ., Angew Chem Int Ed Engl. February 12, 2016; 55 (7): 2454-8.
One-hour screening of adulterated heparin by simplified peroxide digestion and fast RPIP-LC-MS(2). , Li H, Wickramasekara S, Nemes P ., Anal Chem. August 18, 2015; 87 (16): 8424-32.
Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo. , Onjiko RM, Moody SA , Nemes P ., Proc Natl Acad Sci U S A. May 26, 2015; 112 (21): 6545-50.
Biomolecular imaging with a C60-SIMS/MALDI dual ion source hybrid mass spectrometer: instrumentation, matrix enhancement, and single cell analysis. , Lanni EJ, Dunham SJ, Nemes P , Rubakhin SS, Sweedler JV., J Am Soc Mass Spectrom. November 1, 2014; 25 (11): 1897-907.
High-throughput differentiation of heparin from other glycosaminoglycans by pyrolysis mass spectrometry. , Nemes P , Hoover WJ, Keire DA., Anal Chem. August 6, 2013; 85 (15): 7405-12.
Qualitative and quantitative metabolomic investigation of single neurons by capillary electrophoresis electrospray ionization mass spectrometry. , Nemes P , Rubakhin SS, Aerts JT, Sweedler JV., Nat Protoc. April 1, 2013; 8 (4): 783-99.
Combining small-volume metabolomic and transcriptomic approaches for assessing brain chemistry. , Knolhoff AM, Nautiyal KM, Nemes P , Kalachikov S, Morozova I, Silver R, Sweedler JV., Anal Chem. March 19, 2013; 85 (6): 3136-43.
Single-cell metabolomics: changes in the metabolome of freshly isolated and cultured neurons. , Nemes P , Knolhoff AM, Rubakhin SS, Sweedler JV., ACS Chem Neurosci. October 17, 2012; 3 (10): 782-92.
Profiling metabolites and peptides in single cells. , Rubakhin SS, Romanova EV, Nemes P , Sweedler JV., Nat Methods. April 1, 2011; 8 (4 Suppl): S20-9.
Atmospheric-pressure molecular imaging of biological tissues and biofilms by LAESI mass spectrometry. , Nemes P , Vertes A., J Vis Exp. September 3, 2010; (43): .
Direct analysis of lipids and small metabolites in mouse brain tissue by AP IR-MALDI and reactive LAESI mass spectrometry. , Shrestha B, Nemes P , Nazarian J, Hathout Y, Hoffman EP, Vertes A., Analyst. April 1, 2010; 135 (4): 751-8.
Simultaneous imaging of small metabolites and lipids in rat brain tissues at atmospheric pressure by laser ablation electrospray ionization mass spectrometry. , Nemes P , Woods AS, Vertes A., Anal Chem. February 1, 2010; 82 (3): 982-8.
Laser ablation electrospray ionization for atmospheric pressure molecular imaging mass spectrometry. , Nemes P , Vertes A., Methods Mol Biol. January 1, 2010; 656 159-71.