???pagination.result.count???
???pagination.result.page???
1
Embryonic Epidermal Lectins in Three Amphibian Species, Rana ornativentris, Bufo japonicus formosus, and Cynops pyrrhogaster. , Nagata S , Tanuma M., Zoolog Sci. August 1, 2020; 37 (4): 338-345.
Xenopus laevis macrophage-like cells produce XCL-1, an intelectin family serum lectin that recognizes bacteria. , Nagata S ., Immunol Cell Biol. September 1, 2018; 96 (8): 872-878.
Identification and characterization of a novel intelectin in the digestive tract of Xenopus laevis. , Nagata S ., Dev Comp Immunol. June 1, 2016; 59 229-39.
Bacterial lipopolysaccharides stimulate production of XCL1, a calcium-dependent lipopolysaccharide-binding serum lectin, in Xenopus laevis. , Nagata S , Nishiyama S, Ikazaki Y., Dev Comp Immunol. June 1, 2013; 40 (2): 94-102.
Structure and expression of myelin basic protein gene products in Xenopus laevis. , Nanba R, Fujita N , Nagata S ., Gene. July 1, 2010; 459 (1-2): 32-8.
Contactin 1 knockdown in the hindbrain induces abnormal development of the trigeminal sensory nerve in Xenopus embryos. , Fujita N , Nagata S ., Dev Genes Evol. October 1, 2007; 217 (10): 709-13.
Repulsive guidance of axons of spinal sensory neurons in Xenopus laevis embryos: roles of Contactin and notochord-derived chondroitin sulfate proteoglycans. , Fujita N , Nagata S ., Dev Growth Differ. September 1, 2005; 47 (7): 445-56.
Isolation, characterization, and extra-embryonic secretion of the Xenopus laevis embryonic epidermal lectin, XEEL. , Nagata S ., Glycobiology. March 1, 2005; 15 (3): 281-90.
Overexpression of receptor-type protein tyrosine phosphatase beta causes abnormal development of the cranial nerve in Xenopus embryos. , Nagata S , Yamada Y, Saito R, Fujita N ., Neurosci Lett. October 9, 2003; 349 (3): 175-8.
Developmental expression of XEEL, a novel molecule of the Xenopus oocyte cortical granule lectin family. , Nagata S , Nakanishi M, Nanba R, Fujita N ., Dev Genes Evol. July 1, 2003; 213 (7): 368-70.
Overexpression of Fyn tyrosine kinase causes abnormal development of primary sensory neurons in Xenopus laevis embryos. , Saito R, Fujita N , Nagata S ., Dev Growth Differ. June 1, 2001; 43 (3): 229-38.
Multiple variants of receptor-type protein tyrosine phosphatase beta are expressed in the central nervous system of Xenopus. , Nagata S , Saito R, Yamada Y, Fujita N , Watanabe K ., Gene. January 10, 2001; 262 (1-2): 81-8.
An essential role of the neuronal cell adhesion molecule contactin in development of the Xenopus primary sensory system. , Fujita N , Saito R, Watanabe K , Nagata S ., Dev Biol. May 15, 2000; 221 (2): 308-20.
Induction of blood cells in Xenopus embryo explants. , Miyanaga Y, Shiurba R, Nagata S , Pfeiffer CJ, Asashima M ., Dev Genes Evol. January 1, 1998; 207 (7): 417-26.
cDNA cloning and expression of the Xenopus homologue of the neural adhesion molecule, contactin ( F3/ F11). , Nagata S , Fujita N , Takeuchi K, Watanabe K ., Zoolog Sci. December 1, 1996; 13 (6): 813-20.
Development of T lymphocytes in Xenopus laevis: appearance of the antigen recognized by an anti- thymocyte mouse monoclonal antibody. , Nagata S ., Dev Biol. April 1, 1986; 114 (2): 389-94.
T cell proliferative responses of Xenopus lymphocyte subpopulations separated on anti- thymocyte monoclonal antibody coupled to sepharose beads. , Nagata S ., Dev Comp Immunol. January 1, 1986; 10 (2): 259-64.
A cell surface marker of thymus-dependent lymphocytes in Xenopus laevis is identifiable by mouse monoclonal antibody. , Nagata S ., Eur J Immunol. August 1, 1985; 15 (8): 837-41.
Identification and treatment of a lethal nematode (Capillaria xenopodis) infestation in the South African frog, Xenopus laevis. , Cohen N , Effrige NJ, Parsons SC, Rollins-Smith LA , Nagata S , Albright D., Dev Comp Immunol. January 1, 1984; 8 (3): 739-41.
Induction of T cell differentiation in early-thymectomized Xenopus by grafting adult thymuses from either MHC-matched or from partially or totally MHC-mismatched donors. , Nagata S , Cohen N ., Thymus. January 1, 1984; 6 (1-2): 89-103.
Specific in vivo and nonspecific in vitro alloreactivities of adult frogs (Xenopus laevis) that were thymectomized during early larval life. , Nagata S , Cohen N ., Eur J Immunol. July 1, 1983; 13 (7): 541-5.
Thymocyte precursors in early-thymectomized Xenopus: migration into and differentiation in allogenic thymus grafts. , Nagata S , Kawahara H., Dev Comp Immunol. January 1, 1982; 6 (3): 509-18.
Role of injected thymocytes in reconstituting cellular and humoral immune responses in early thymectomized Xenopus: use of triploid markers. , Kawahara H, Nagata S , Katagiri C., Dev Comp Immunol. January 1, 1980; 4 (4): 679-90.
Restoration of antibody forming capacity in early-thymectomized Xenopus by injecting thymocytes. , Nagata S ., Dev Comp Immunol. January 1, 1980; 4 (3): 553-7.
Isolated lymphocytes can restore allograft rejection capacity of early-thymectomized Xenopus. , Nagata S , Tochinai S., Dev Comp Immunol. October 1, 1978; 2 (4): 637-45.
Lymphocyte surface immunoglobulin in Xenopus laevis. Light and electron microscopic demonstration by immunoperoxidase method. , Nagata S , Katagiri C., Dev Comp Immunol. April 1, 1978; 2 (2): 277-85.
Electron microscopic study on the early histogenesis of thymus in the toad, Xenopus laevis. , Nagata S ., Cell Tissue Res. March 30, 1977; 179 (1): 87-96.
Restoration of immune responsiveness in early thymectomized xenopus by implantation of histocompatible adult thymus. , Tochinai S, Nagata S , Katagiri C., Eur J Immunol. October 1, 1976; 6 (10): 711-4.