???pagination.result.count???
???pagination.result.page???
1
Adherens junctions are involved in polarized contractile ring formation in dividing epithelial cells of Xenopus laevis embryos. , Hatte G, Prigent C , Tassan JP ., Exp Cell Res. May 1, 2021; 402 (1): 112525.
Transcriptome profiling reveals male- and female-specific gene expression pattern and novel gene candidates for the control of sex determination and gonad development in Xenopus laevis. , Piprek RP, Damulewicz M, Tassan JP , Kloc M , Kubiak JZ ., Dev Genes Evol. May 1, 2019; 229 (2-3): 53-72.
Tight junction-associated protein GEF-H1 in the neighbours of dividing epithelial cells is essential for adaptation of cell-cell membrane during cytokinesis. , Hatte G, Prigent C , Tassan JP ., Exp Cell Res. October 1, 2018; 371 (1): 72-82.
Tight junctions negatively regulate mechanical forces applied to adherens junctions in vertebrate epithelial tissue. , Hatte G, Prigent C , Tassan JP ., J Cell Sci. February 5, 2018; 131 (3):
Development of Xenopus laevis bipotential gonads into testis or ovary is driven by sex-specific cell-cell interactions, proliferation rate, cell migration and deposition of extracellular matrix. , Piprek RP, Kloc M , Tassan JP , Kubiak JZ ., Dev Biol. December 15, 2017; 432 (2): 298-310.
Actomyosin-generated tension on cadherin is similar between dividing and non-dividing epithelial cells in early Xenopus laevis embryos. , Herbomel G, Hatte G, Roul J, Padilla-Parra S, Tassan JP , Tramier M., Sci Rep. March 22, 2017; 7 45058.
Role of Cdc6 During Oogenesis and Early Embryo Development in Mouse and Xenopus laevis. , Borsuk E, Jachowicz J, Kloc M , Tassan JP , Kubiak JZ ., Results Probl Cell Differ. January 1, 2017; 59 201-211.
Asymmetries in Cell Division, Cell Size, and Furrowing in the Xenopus laevis Embryo. , Tassan JP , Wühr M , Hatte G, Kubiak J ., Results Probl Cell Differ. January 1, 2017; 61 243-260.
Flexibility vs. robustness in cell cycle regulation of timing of M-phase entry in Xenopus laevis embryo cell-free extract. , Debowski M, El Dika M, Malejczyk J, Zdanowski R, Prigent C , Tassan JP , Kloc M , Lachowicz M, Kubiak JZ ., Int J Dev Biol. January 1, 2016; 60 (7-8-9): 305-314.
CDC6 controls dynamics of the first embryonic M-phase entry and progression via CDK1 inhibition. , El Dika M, Laskowska-Kaszub K, Koryto M, Dudka D, Prigent C , Tassan JP , Kloc M , Polanski Z, Borsuk E, Kubiak JZ ., Dev Biol. December 1, 2014; 396 (1): 67-80.
Epithelial cell division in the Xenopus laevis embryo during gastrulation. , Hatte G, Tramier M, Prigent C , Tassan JP ., Int J Dev Biol. January 1, 2014; 58 (10-12): 775-81.
Control of timing of embryonic M-phase entry and exit is differentially sensitive to CDK1 and PP2A balance. , El Dika M, Dudka D, Prigent C , Tassan JP , Kloc M , Kubiak JZ ., Int J Dev Biol. January 1, 2014; 58 (10-12): 767-74.
Cell-cycle dependent localization of MELK and its new partner RACK1 in epithelial versus mesenchyme-like cells in Xenopus embryo. , Chartrain I, Le Page Y, Hatte G, Körner R, Kubiak JZ , Tassan JP ., Biol Open. August 21, 2013; 2 (10): 1037-48.
Cortical localization of maternal embryonic leucine zipper kinase ( MELK) implicated in cytokinesis in early xenopus embryos. , Tassan JP ., Commun Integr Biol. July 1, 2011; 4 (4): 483-5.
A functional analysis of MELK in cell division reveals a transition in the mode of cytokinesis during Xenopus development. , Le Page Y, Chartrain I, Badouel C, Tassan JP ., J Cell Sci. March 15, 2011; 124 (Pt 6): 958-68.
Maternal embryonic leucine zipper kinase is stabilized in mitosis by phosphorylation and is partially degraded upon mitotic exit. , Badouel C, Chartrain I, Blot J, Tassan JP ., Exp Cell Res. August 1, 2010; 316 (13): 2166-73.
A mitochondrial-targeting signal is present in the non-catalytic domain of the MELK protein kinase. , Chartrain I, Blot J, Lerivray H, Guyot N, Tassan JP ., Cell Biol Int. February 1, 2007; 31 (2): 196-201.
M-phase MELK activity is regulated by MPF and MAPK. , Badouel C, Körner R, Frank-Vaillant M, Couturier A, Nigg EA, Tassan JP ., Cell Cycle. April 1, 2006; 5 (8): 883-9.
Cell-cycle-dependent cortical localization of pEg3 protein kinase in Xenopus and human cells. , Chartrain I, Couturier A, Tassan JP ., Biol Cell. April 1, 2006; 98 (4): 253-63.
An overview of the KIN1/ PAR-1/MARK kinase family. , Tassan JP , Le Goff X., Biol Cell. April 1, 2004; 96 (3): 193-9.
Human pEg3 kinase associates with and phosphorylates CDC25B phosphatase: a potential role for pEg3 in cell cycle regulation. , Davezac N, Baldin V, Blot J, Ducommun B, Tassan JP ., Oncogene. October 31, 2002; 21 (50): 7630-41.
Cell cycle regulation of pEg3, a new Xenopus protein kinase of the KIN1/ PAR-1/MARK family. , Blot J, Chartrain I, Roghi C, Philippe M, Tassan JP ., Dev Biol. January 15, 2002; 241 (2): 327-38.
Expression of the release factor eRF1 (Sup45p) gene of higher eukaryotes in yeast and mammalian tissues. , Urbero B, Eurwilaichitr L, Stansfield I, Tassan JP , Le Goff X, Kress M, Tuite MF., Biochimie. January 1, 1997; 79 (1): 27-36.
MAT1 ('menage à trois') a new RING finger protein subunit stabilizing cyclin H-cdk7 complexes in starfish and Xenopus CAK. , Devault A, Martinez AM, Fesquet D, Labbé JC, Morin N , Tassan JP , Nigg EA, Cavadore JC, Dorée M., EMBO J. October 16, 1995; 14 (20): 5027-36.
Both cdc2 and cdk2 promote S phase initiation in Xenopus egg extracts. , Chevalier S, Tassan JP , Cox R, Philippe M, Ford C., J Cell Sci. May 1, 1995; 108 ( Pt 5) 1831-41.
Cell cycle analysis of the activity, subcellular localization, and subunit composition of human CAK (CDK-activating kinase). , Tassan JP , Schultz SJ, Bartek J, Nigg EA., J Cell Biol. October 1, 1994; 127 (2): 467-78.
A cyclin associated with the CDK-activating kinase MO15. , Mäkelä TP, Tassan JP , Nigg EA, Frutiger S, Hughes GJ, Weinberg RA., Nature. September 15, 1994; 371 (6494): 254-7.
CII the Xenopus homologue of Saccharomyces cerevisiae SUP 45, which is encoded by a maternal RNA, is not essential for translational fidelity in egg extracts. , Tassan JP , Le Goff X, Le Guellec R, Philippe M., Biochem Soc Trans. November 1, 1993; 21 (4): 862-7.
In Xenopus laevis, the product of a developmentally regulated mRNA is structurally and functionally homologous to a Saccharomyces cerevisiae protein involved in translation fidelity. , Tassan JP , Le Guellec K, Kress M, Faure M, Camonis J, Jacquet M, Philippe M., Mol Cell Biol. May 1, 1993; 13 (5): 2815-21.
Translational control by poly(A) elongation during Xenopus development: differential repression and enhancement by a novel cytoplasmic polyadenylation element. , Simon R, Tassan JP , Richter JD., Genes Dev. December 1, 1992; 6 (12B): 2580-91.