???pagination.result.count???
???pagination.result.page???
1
Amphibian mast cells serve as barriers to chytrid fungus infections. , Hauser KA, Garvey CN, Crow RS, Hossainey MRH, Howard DT, Ranganathan N, Gentry LK, Yaparla A, Kalia N, Zelle M, Jones EJ, Duttargi AN, Rollins-Smith LA , Muletz-Wolz CR, Grayfer L ., Elife. July 31, 2024; 12
Amphibian myelopoiesis. , Yaparla A, Stern DB, Hossainey MRH, Crandall KA, Grayfer L ., Dev Comp Immunol. September 1, 2023; 146 104701.
Advances in the Xenopus immunome: Diversification, expansion, and contraction. , Dimitrakopoulou D, Khwatenge CN, James-Zorn C , Paiola M , Bellin EW, Tian Y, Sundararaj N , Polak EJ, Grayfer L , Barnard D , Ohta Y, Horb M , Sang Y, Robert J ., Dev Comp Immunol. August 1, 2023; 145 104734.
A perspective into the relationships between amphibian (Xenopus laevis) myeloid cell subsets. , Hossainey MRH, Hauser KA, Garvey CN, Kalia N, Garvey JM, Grayfer L ., Philos Trans R Soc Lond B Biol Sci. July 31, 2023; 378 (1882): 20220124.
A comparison of amphibian (Xenopus laevis) tadpole and adult frog macrophages. , Hossainey MRH, Yaparla A, Uzzaman Z, Moore T, Grayfer L ., Dev Comp Immunol. April 1, 2023; 141 104647.
Molecular diversity and functional implication of amphibian interferon complex: Remarking immune adaptation in vertebrate evolution. , Adeyemi OD, Tian Y, Khwatenge CN, Grayfer L , Sang Y., Dev Comp Immunol. March 1, 2023; 140 104624.
Endogenous Retroviruses Augment Amphibian (Xenopus laevis) Tadpole Antiviral Protection. , Kalia N, Hauser KA, Burton S, Hossainey MRH, Zelle M, Horb ME , Grayfer L ., J Virol. June 8, 2022; 96 (11): e0063422.
The Roles of Amphibian (Xenopus laevis) Macrophages during Chronic Frog Virus 3 Infections. , Hossainey MRH, Yaparla A, Hauser KA, Moore TE, Grayfer L ., Viruses. November 18, 2021; 13 (11):
Amphibian (Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Antiviral Responses to Intestinal Frog Virus 3 Infections. , Hauser KA, Singer JC, Hossainey MRH, Moore TE, Wendel ES, Yaparla A, Kalia N, Grayfer L ., Front Immunol. January 1, 2021; 12 737403.
Exploring the relationships between amphibian (Xenopus laevis) myeloid cell subsets. , Yaparla A, Koubourli DV, Popovic M, Grayfer L ., Dev Comp Immunol. December 1, 2020; 113 103798.
Colony-stimulating factor-1- and interleukin-34-derived macrophages differ in their susceptibility to Mycobacterium marinum. , Popovic M, Yaparla A, Paquin-Proulx D, Koubourli DV, Webb R, Firmani M, Grayfer L ., J Leukoc Biol. December 1, 2019; 106 (6): 1257-1269.
The amphibian (Xenopus laevis) colony-stimulating factor-1 and interleukin-34-derived macrophages possess disparate pathogen recognition capacities. , Yaparla A, Docter-Loeb H, Melnyk MLS, Batheja A, Grayfer L ., Dev Comp Immunol. September 1, 2019; 98 89-97.
Myelopoiesis of the Amphibian Xenopus laevis Is Segregated to the Bone Marrow, Away From Their Hematopoietic Peripheral Liver. , Yaparla A, Reeves P, Grayfer L ., Front Immunol. April 4, 2019; 10 3015.
Class A Scavenger Receptors Are Used by Frog Virus 3 During Its Cellular Entry. , Vo NTK, Guerreiro M, Yaparla A, Grayfer L , DeWitte-Orr SJ., Viruses. January 23, 2019; 11 (2):
Amphibian (Xenopus laevis) Interleukin-8 (CXCL8): A Perspective on the Evolutionary Divergence of Granulocyte Chemotaxis. , Koubourli DV, Yaparla A, Popovic M, Grayfer L ., Front Immunol. September 12, 2018; 9 2058.
Amphibian (Xenopus laevis) Tadpoles and Adult Frogs Differ in Their Use of Expanded Repertoires of Type I and Type III Interferon Cytokines. , Wendel ES, Yaparla A, Melnyk MLS, Koubourli DV, Grayfer L ., Viruses. July 17, 2018; 10 (7):
Elicitation of Xenopus laevis Tadpole and Adult Frog Peritoneal Leukocytes. , Grayfer L ., Cold Spring Harb Protoc. July 2, 2018; 2018 (7):
Differentiation-dependent antiviral capacities of amphibian (Xenopus laevis) macrophages. , Yaparla A, Popovic M, Grayfer L ., J Biol Chem. February 2, 2018; 293 (5): 1736-1744.
Isolation and Culture of Amphibian (Xenopus laevis) Sub-Capsular Liver and Bone Marrow Cells. , Yaparla A, Grayfer L ., Methods Mol Biol. January 1, 2018; 1865 275-281.
Immune roles of amphibian (Xenopus laevis) tadpole granulocytes during Frog Virus 3 ranavirus infections. , Koubourli DV, Wendel ES, Yaparla A, Ghaul JR, Grayfer L ., Dev Comp Immunol. July 1, 2017; 72 112-118.
Amphibian (Xenopus laevis) tadpoles and adult frogs mount distinct interferon responses to the Frog Virus 3 ranavirus. , Wendel ES, Yaparla A, Koubourli DV, Grayfer L ., Virology. March 1, 2017; 503 12-20.
The unique myelopoiesis strategy of the amphibian Xenopus laevis. , Yaparla A, Wendel ES, Grayfer L ., Dev Comp Immunol. October 1, 2016; 63 136-43.
Amphibian macrophage development and antiviral defenses. , Grayfer L , Robert J ., Dev Comp Immunol. May 1, 2016; 58 60-7.
Retention of duplicated ITAM-containing transmembrane signaling subunits in the tetraploid amphibian species Xenopus laevis. , Guselnikov SV , Grayfer L , De Jesús Andino F, Rogozin IB, Robert J , Taranin AV., Dev Comp Immunol. November 1, 2015; 53 (1): 158-68.
Characterization of Frog Virus 3 knockout mutants lacking putative virulence genes. , Andino Fde J, Grayfer L , Chen G, Chinchar VG, Edholm ES, Robert J ., Virology. November 1, 2015; 485 162-70.
Distinct functional roles of amphibian (Xenopus laevis) colony-stimulating factor-1- and interleukin-34-derived macrophages. , Grayfer L , Robert J ., J Leukoc Biol. October 1, 2015; 98 (4): 641-9.
Nonclassical MHC-Restricted Invariant Vα6 T Cells Are Critical for Efficient Early Innate Antiviral Immunity in the Amphibian Xenopus laevis. , Edholm ES, Grayfer L , De Jesús Andino F, Robert J ., J Immunol. July 15, 2015; 195 (2): 576-86.
Prominent amphibian (Xenopus laevis) tadpole type III interferon response to the frog virus 3 ranavirus. , Grayfer L , De Jesús Andino F, Robert J ., J Virol. May 1, 2015; 89 (9): 5072-82.
Evolution of nonclassical MHC-dependent invariant T cells. , Edholm ES, Grayfer L , Robert J ., Cell Mol Life Sci. December 1, 2014; 71 (24): 4763-80.
Divergent antiviral roles of amphibian (Xenopus laevis) macrophages elicited by colony-stimulating factor-1 and interleukin-34. , Grayfer L , Robert J ., J Leukoc Biol. December 1, 2014; 96 (6): 1143-53.
Negative effects of low dose atrazine exposure on the development of effective immunity to FV3 in Xenopus laevis. , Sifkarovski J, Grayfer L , De Jesús Andino F, Lawrence BP, Robert J ., Dev Comp Immunol. November 1, 2014; 47 (1): 52-8.
The amphibian (Xenopus laevis) type I interferon response to frog virus 3: new insight into ranavirus pathogenicity. , Grayfer L , De Jesús Andino F, Robert J ., J Virol. May 1, 2014; 88 (10): 5766-77.
Inflammation-induced reactivation of the ranavirus Frog Virus 3 in asymptomatic Xenopus laevis. , Robert J , Grayfer L , Edholm ES, Ward B, De Jesús Andino F., PLoS One. January 1, 2014; 9 (11): e112904.
Mechanisms of amphibian macrophage development: characterization of the Xenopus laevis colony-stimulating factor-1 receptor. , Grayfer L , Edholm ES, Robert J ., Int J Dev Biol. January 1, 2014; 58 (10-12): 757-66.
Nonclassical MHC class I-dependent invariant T cells are evolutionarily conserved and prominent from early development in amphibians. , Edholm ES, Albertorio Saez LM, Gill AL, Gill SR, Grayfer L , Haynes N, Myers JR, Robert J ., Proc Natl Acad Sci U S A. August 27, 2013; 110 (35): 14342-7.
Colony-stimulating factor-1-responsive macrophage precursors reside in the amphibian (Xenopus laevis) bone marrow rather than the hematopoietic subcapsular liver. , Grayfer L , Robert J ., J Innate Immun. January 1, 2013; 5 (6): 531-42.
Susceptibility of Xenopus laevis tadpoles to infection by the ranavirus Frog-Virus 3 correlates with a reduced and delayed innate immune response in comparison with adult frogs. , De Jesús Andino F, Chen G, Li Z, Grayfer L , Robert J ., Virology. October 25, 2012; 432 (2): 435-43.
Immune evasion strategies of ranaviruses and innate immune responses to these emerging pathogens. , Grayfer L , Andino Fde J, Chen G, Chinchar GV, Robert J ., Viruses. July 1, 2012; 4 (7): 1075-92.