???pagination.result.count???
Pituitary melanotrope cells of Xenopus laevis are of neural ridge origin and do not require induction by the infundibulum. , Eagleson GW , Selten MM, Roubos EW , Jenks BG ., Gen Comp Endocrinol. August 1, 2012; 178 (1): 116-22.
The role of brain-derived neurotrophic factor in the regulation of cell growth and gene expression in melanotrope cells of Xenopus laevis. , Jenks BG , Kuribara M, Kidane AH, Kramer BM, Roubos EW , Scheenen WJ., Gen Comp Endocrinol. July 1, 2012; 177 (3): 315-21.
Gene expression profiling of pituitary melanotrope cells during their physiological activation. , Kuribara M, van Bakel NH, Ramekers D, de Gouw D, Neijts R, Roubos EW , Scheenen WJ, Martens GJ, Jenks BG ., J Cell Physiol. January 1, 2012; 227 (1): 288-96.
ERK-regulated double cortin-like kinase (DCLK)-short phosphorylation and nuclear translocation stimulate POMC gene expression in endocrine melanotrope cells. , Kuribara M, Jenks BG , Dijkmans TF, de Gouw D, Ouwens DT, Roubos EW , Vreugdenhil E, Scheenen WJ., Endocrinology. June 1, 2011; 152 (6): 2321-9.
Extracellular-signal regulated kinase regulates production of pro-opiomelanocortin in pituitary melanotroph cells. , Kuribara M, Kidane AH, Vos GA, de Gouw D, Roubos EW , Scheenen WJ, Jenks BG ., J Neuroendocrinol. March 1, 2011; 23 (3): 261-8.
Brain-derived neurotrophic factor stimulates growth of pituitary melanotrope cells in an autocrine way. , Kuribara M, Hess MW, Cazorla M, Roubos EW , Scheenen WJ, Jenks BG ., Gen Comp Endocrinol. January 1, 2011; 170 (1): 156-61.
Analysis of the melanotrope cell neuroendocrine interface in two amphibian species, Rana ridibunda and Xenopus laevis: a celebration of 35 years of collaborative research. , Jenks BG , Galas L, Kuribara M, Desrues L, Kidane AH, Vaudry H, Scheenen WJ, Roubos EW , Tonon MC., Gen Comp Endocrinol. January 1, 2011; 170 (1): 57-67.
Plasticity of melanotrope cell regulations in Xenopus laevis. , Roubos EW , Van Wijk DC, Kozicz T, Scheenen WJ, Jenks BG ., Eur J Neurosci. December 1, 2010; 32 (12): 2082-6.
BDNF stimulates Ca2+ oscillation frequency in melanotrope cells of Xenopus laevis: contribution of IP3-receptor-mediated release of intracellular Ca2+ to gene expression. , Kuribara M, Eijsink VD, Roubos EW , Jenks BG , Scheenen WJ., Gen Comp Endocrinol. November 1, 2010; 169 (2): 123-9.
Ultrastructural and neurochemical architecture of the pituitary neural lobe of Xenopus laevis. , van Wijk DC, Meijer KH, Roubos EW ., Gen Comp Endocrinol. September 1, 2010; 168 (2): 293-301.
A developmental analysis of periodic albinism in the amphibian Xenopus laevis. , Eagleson GW , van der Heijden RA, Roubos EW , Jenks BG ., Gen Comp Endocrinol. September 1, 2010; 168 (2): 302-6.
About a snail, a toad, and rodents: animal models for adaptation research. , Roubos EW , Jenks BG , Xu L, Kuribara M, Scheenen WJ, Kozicz T., Front Endocrinol (Lausanne). January 1, 2010; 1 4.
Neurochemistry and plasticity of the median eminence and neural pituitary lobe in relation to background adaptation of Xenopus laevis. , van Wijk DC, Roubos EW ., Ann N Y Acad Sci. April 1, 2009; 1163 524-7.
Using transgenic animal models in neuroendocrine research: lessons from Xenopus laevis. , Scheenen WJ, Jansen EJ, Roubos EW , Martens GJ., Ann N Y Acad Sci. April 1, 2009; 1163 296-307.
Dynamics of glucocorticoid and mineralocorticoid receptors in the Xenopus laevis pituitary pars intermedia. , Roubos EW , Kuribara M, Kuipers-Kwant FJ, Coenen TA, Meijer KH, Cruijsen PM, Denver RJ ., Ann N Y Acad Sci. April 1, 2009; 1163 292-5.
Differential neuroendocrine expression of multiple brain-derived neurotrophic factor transcripts. , Kidane AH, Heinrich G, Dirks RP , de Ruyck BA, Lubsen NH, Roubos EW , Jenks BG ., Endocrinology. March 1, 2009; 150 (3): 1361-8.
Pituitary adenylate cyclase-activating polypeptide regulates brain-derived neurotrophic factor exon IV expression through the VPAC1 receptor in the amphibian melanotrope cell. , Kidane AH, Roubos EW , Jenks BG ., Endocrinology. August 1, 2008; 149 (8): 4177-82.
Intracellular signal transduction by the extracellular calcium-sensing receptor of Xenopus melanotrope cells. , van den Hurk MJ, Cruijsen PM, Schoeber JP, Scheenen WJ, Roubos EW , Jenks BG ., Gen Comp Endocrinol. June 1, 2008; 157 (2): 156-64.
Brain distribution and evidence for both central and neurohormonal actions of cocaine- and amphetamine-regulated transcript peptide in Xenopus laevis. , Roubos EW , Lázár G, Calle M, Barendregt HP, Gaszner B, Kozicz T., J Comp Neurol. April 1, 2008; 507 (4): 1622-38.
Calcium channel kinetics of melanotrope cells in Xenopus laevis depend on environmental stimulation. , Zhang H , Langeslag M, Breukels V, Jenks BG , Roubos EW , Scheenen WJ., Gen Comp Endocrinol. March 1, 2008; 156 (1): 104-12.
Actions of PACAP and VIP on melanotrope cells of Xenopus laevis. , Kidane AH, Cruijsen PM, Ortiz-Bazan MA, Vaudry H, Leprince J, Kuijpers-Kwant FJ, Roubos EW , Jenks BG ., Peptides. September 1, 2007; 28 (9): 1790-6.
Plasticity in the melanotrope neuroendocrine interface of Xenopus laevis. , Jenks BG , Kidane AH, Scheenen WJ, Roubos EW ., Neuroendocrinology. January 1, 2007; 85 (3): 177-85.
Expression and physiological regulation of BDNF receptors in the neuroendocrine melanotrope cell of Xenopus laevis. , Kidane AH, van Dooren SH, Roubos EW , Jenks BG ., Gen Comp Endocrinol. January 1, 2007; 153 (1-3): 176-81.
Localisation and physiological regulation of corticotrophin-releasing factor receptor 1 mRNA in the Xenopus laevis brain and pituitary gland. , Calle M, Jenks BG , Corstens GJ, Veening JG, Barendregt HP, Roubos EW ., J Neuroendocrinol. October 1, 2006; 18 (10): 797-805.
The effects of disruption of A kinase anchoring protein-protein kinase A association on protein kinase A signalling in neuroendocrine melanotroph cells of Xenopus laevis. , Corstens GJ, van Boxtel R, van den Hurk MJ, Roubos EW , Jenks BG ., J Neuroendocrinol. July 1, 2006; 18 (7): 477-83.
Effect of starvation on Fos and neuropeptide immunoreactivities in the brain and pituitary gland of Xenopus laevis. , Calle M, Kozicz T, van der Linden E, Desfeux A, Veening JG, Barendregt HP, Roubos EW ., Gen Comp Endocrinol. July 1, 2006; 147 (3): 237-46.
Brain-derived neurotrophic factor in the brain of Xenopus laevis may act as a pituitary neurohormone together with mesotocin. , Calle M, Wang L, Kuijpers FJ, Cruijsen PM, Arckens L, Roubos EW ., J Neuroendocrinol. June 1, 2006; 18 (6): 454-65.
Receptors for neuropeptide Y, gamma-aminobutyric acid and dopamine differentially regulate Ca2+ currents in Xenopus melanotrope cells via the G(i) protein beta/gamma-subunit. , Zhang H , Roubos EW , Jenks BG , Scheenen WJ., Gen Comp Endocrinol. January 15, 2006; 145 (2): 140-7.
High-pressure freezing followed by cryosubstitution as a tool for preserving high-quality ultrastructure and immunoreactivity in the Xenopus laevis pituitary gland. , Wang L, Humbel BM, Roubos EW ., Brain Res Brain Res Protoc. September 1, 2005; 15 (3): 155-63.
Evidence that urocortin I acts as a neurohormone to stimulate alpha MSH release in the toad Xenopus laevis. , Calle M, Corstens GJ, Wang L, Kozicz T, Denver RJ , Barendregt HP, Roubos EW ., Dev Biol. April 8, 2005; 1040 (1-2): 14-28.
Brain-derived neurotrophic factor in the hypothalamo-hypophyseal system of Xenopus laevis. , Wang L, Calle M, Roubos EW ., Ann N Y Acad Sci. April 1, 2005; 1040 512-4.
Calcium influx through voltage-operated calcium channels is required for proopiomelanocortin protein expression in Xenopus melanotropes. , van den Hurk MJ, Scheenen WJ, Roubos EW , Jenks BG ., Ann N Y Acad Sci. April 1, 2005; 1040 494-7.
Analysis of Xenopus melanotrope cell size and POMC-gene expression. , Corstens GJ, Roubos EW , Jenks BG , Van Erp PE., Ann N Y Acad Sci. April 1, 2005; 1040 269-72.
Opioid peptides, CRF, and urocortin in cerebrospinal fluid-contacting neurons in Xenopus laevis. , Calle M, Claassen IE, Veening JG, Kozicz T, Roubos EW , Barendregt HP., Ann N Y Acad Sci. April 1, 2005; 1040 249-52.
Neuronal, neurohormonal, and autocrine control of Xenopus melanotrope cell activity. , Roubos EW , Scheenen WJ, Jenks BG ., Ann N Y Acad Sci. April 1, 2005; 1040 172-83.
In situ hybridization localization of TRH precursor and TRH receptor mRNAs in the brain and pituitary of Xenopus laevis. , Galas L, Bidaud I, Bulant M, Jenks BG , Ouwens DT, Jégou S, Ladram A, Roubos EW , Nicolas P, Tonon MC, Vaudry H., Ann N Y Acad Sci. April 1, 2005; 1040 95-105.
The extracellular calcium-sensing receptor increases the number of calcium steps and action currents in pituitary melanotrope cells. , van den Hurk MJ, Jenks BG , Roubos EW , Scheenen WJ., Neurosci Lett. March 29, 2005; 377 (2): 125-9.
Melanotrope cells of Xenopus laevis express multiple types of high-voltage-activated Ca2+ channels. , Zhang HY , Langeslag M, Voncken M, Roubos EW , Scheenen WJ., J Neuroendocrinol. January 1, 2005; 17 (1): 1-9.
Low temperature stimulates alpha- melanophore-stimulating hormone secretion and inhibits background adaptation in Xenopus laevis. , Tonosaki Y, Cruijsen PM, Nishiyama K, Yaginuma H, Roubos EW ., J Neuroendocrinol. November 1, 2004; 16 (11): 894-905.
Distribution of the mRNAs encoding the thyrotropin-releasing hormone ( TRH) precursor and three TRH receptors in the brain and pituitary of Xenopus laevis: effect of background color adaptation on TRH and TRH receptor gene expression. , Bidaud I, Galas L, Bulant M, Jenks BG , Ouwens DT, Jégou S, Ladram A, Roubos EW , Tonon MC, Nicolas P, Vaudry H., J Comp Neurol. September 6, 2004; 477 (1): 11-28.
Dopamine D2-receptor activation differentially inhibits N- and R-type Ca2+ channels in Xenopus melanotrope cells. , Zhang H , Jenks BG , Ciccarelli A, Roubos EW , Scheenen WJ., Neuroendocrinology. January 1, 2004; 80 (6): 368-78.
Differential distribution and regulation of expression of synaptosomal-associated protein of 25 kDa isoforms in the Xenopus pituitary gland and brain. , Kolk SM, Groffen AJ, Tuinhof R, Ouwens DT, Cools AR, Jenks BG , Verhage M, Roubos EW ., Neuroscience. January 1, 2004; 128 (3): 531-43.
Activity-dependent dynamics of coexisting brain-derived neurotrophic factor, pro-opiomelanocortin and alpha- melanophore-stimulating hormone in melanotrope cells of Xenopus laevis. , Wang LC , Meijer HK, Humbel BM, Jenks BG , Roubos EW ., J Neuroendocrinol. January 1, 2004; 16 (1): 19-25.
Role of cortical filamentous actin in the melanotrope cell of Xenopus laevis. , Corstens GJ, Calle M, Roubos EW , Jenks BG ., Gen Comp Endocrinol. November 1, 2003; 134 (2): 95-102.
Expression and characterization of the extracellular Ca(2+)-sensing receptor in melanotrope cells of Xenopus laevis. , van den Hurk MJ, Ouwens DT, Scheenen WJ, Limburg V, Gellekink H, Bai M, Roubos EW , Jenks BG ., Endocrinology. June 1, 2003; 144 (6): 2524-33.
Ca2+ oscillations in melanotropes of Xenopus laevis: their generation, propagation, and function. , Jenks BG , Roubos EW , Scheenen WJ., Gen Comp Endocrinol. May 1, 2003; 131 (3): 209-19.
Electrical membrane activity and intracellular calcium buffering control exocytosis efficiency in Xenopus melanotrope cells. , Scheenen WJ, Dernison MM, Lieste JR, Jenks BG , Roubos EW ., Neuroendocrinology. March 1, 2003; 77 (3): 153-61.
Alpha- melanophore-stimulating hormone in the brain, cranial placode derivatives, and retina of Xenopus laevis during development in relation to background adaptation. , Kramer BM, Claassen IE, Westphal NJ, Jansen M, Tuinhof R, Jenks BG , Roubos EW ., J Comp Neurol. January 27, 2003; 456 (1): 73-83.
Demonstration of postsynaptic receptor plasticity in an amphibian neuroendocrine interface. , Jenks BG , Ouwens DT, Coolen MW, Roubos EW , Martens GJ., J Neuroendocrinol. November 1, 2002; 14 (11): 843-5.
Sauvagine regulates Ca2+ oscillations and electrical membrane activity of melanotrope cells of Xenopus laevis. , Cornelisse LN, Deumens R, Coenen JJ, Roubos EW , Gielen CC, Ypey DL, Jenks BG , Scheenen WJ., J Neuroendocrinol. October 1, 2002; 14 (10): 778-87.