???pagination.result.count???
???pagination.result.page???
1
The future of amphibian immunology: Opportunities and challenges. , Rollins-Smith LA ., Dev Comp Immunol. November 3, 2024; 160 105237.
Amphibian mast cells serve as barriers to chytrid fungus infections. , Hauser KA, Garvey CN, Crow RS, Hossainey MRH, Howard DT, Ranganathan N, Gentry LK, Yaparla A, Kalia N, Zelle M, Jones EJ, Duttargi AN, Rollins-Smith LA , Muletz-Wolz CR, Grayfer L ., Elife. July 31, 2024; 12
Heat stress and amphibian immunity in a time of climate change. , Rollins-Smith LA , Le Sage EH., Philos Trans R Soc Lond B Biol Sci. July 31, 2023; 378 (1882): 20220132.
The importance of antimicrobial peptides (AMPs) in amphibian skin defense. , Rollins-Smith LA ., Dev Comp Immunol. May 1, 2023; 142 104657.
Lymphocyte Deficiency Induced by Sublethal Irradiation in Xenopus. , Rollins-Smith LA , Robert J ., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):
Amphibian immunity-stress, disease, and climate change. , Rollins-Smith LA ., Dev Comp Immunol. January 1, 2017; 66 111-119.
Using "Omics" and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases. , Rebollar EA, Antwis RE, Becker MH, Belden LK, Bletz MC, Brucker RM, Harrison XA, Hughey MC, Kueneman JG, Loudon AH, McKenzie V, Medina D, Minbiole KP, Rollins-Smith LA , Walke JB, Weiss S, Woodhams DC, Harris RN., Front Microbiol. January 1, 2016; 7 68.
Immunomodulatory metabolites released by the frog-killing fungus Batrachochytrium dendrobatidis. , Rollins-Smith LA , Fites JS, Reinert LK, Shiakolas AR, Umile TP, Minbiole KP., Infect Immun. December 1, 2015; 83 (12): 4565-70.
Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline. , Piovia-Scott J, Pope K, Worth SJ, Rosenblum EB, Poorten T, Refsnider J, Rollins-Smith LA , Reinert LK, Wells HL, Rejmanek D, Lawler S, Foley J., ISME J. July 1, 2015; 9 (7): 1570-8.
Coqui frogs persist with the deadly chytrid fungus despite a lack of defensive antimicrobial peptides. , Rollins-Smith LA , Reinert LK, Burrowes PA., Dis Aquat Organ. February 10, 2015; 113 (1): 81-3.
Inhibition of local immune responses by the frog-killing fungus Batrachochytrium dendrobatidis. , Fites JS, Reinert LK, Chappell TM, Rollins-Smith LA ., Infect Immun. November 1, 2014; 82 (11): 4698-706.
Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression. , McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, Halstead NT, Lentz G, Tenouri N, Young S, Civitello DJ, Ortega N, Fites JS, Reinert LK, Rollins-Smith LA , Raffel TR, Rohr JR., Nature. July 10, 2014; 511 (7508): 224-7.
Evaluation of amphotericin B and chloramphenicol as alternative drugs for treatment of chytridiomycosis and their impacts on innate skin defenses. , Holden WM, Ebert AR, Canning PF, Rollins-Smith LA ., Appl Environ Microbiol. July 1, 2014; 80 (13): 4034-41.
Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines. , Holden WM, Fites JS, Reinert LK, Rollins-Smith LA ., Fungal Biol. January 1, 2014; 118 (1): 48-60.
The invasive chytrid fungus of amphibians paralyzes lymphocyte responses. , Fites JS, Ramsey JP, Holden WM, Collier SP, Sutherland DM, Reinert LK, Gayek AS, Dermody TS, Aune TM, Oswald-Richter K, Rollins-Smith LA ., Science. October 18, 2013; 342 (6156): 366-9.
Norepinephrine depletion of antimicrobial peptides from the skin glands of Xenopus laevis. , Gammill WM, Fites JS, Rollins-Smith LA ., Dev Comp Immunol. May 1, 2012; 37 (1): 19-27.
Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy. , Woodhams DC, Geiger CC, Reinert LK, Rollins-Smith LA , Lam B, Harris RN, Briggs CJ, Vredenburg VT, Voyles J., Dis Aquat Organ. February 17, 2012; 98 (1): 11-25.
Amphibian immune defenses against chytridiomycosis: impacts of changing environments. , Rollins-Smith LA , Ramsey JP, Pask JD, Reinert LK, Woodhams DC., Integr Comp Biol. October 1, 2011; 51 (4): 552-62.
Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis. , Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA ., Infect Immun. September 1, 2010; 78 (9): 3981-92.
Immune defenses of Xenopus laevis against Batrachochytrium dendrobatidis. , Rollins-Smith LA , Ramsey JP, Reinert LK, Woodhams DC, Livo LJ, Carey C., Front Biosci (Schol Ed). June 1, 2009; 1 (1): 68-91.
Development of an assay for testing the antimicrobial activity of skin peptides against the amphibian chytrid fungus (Batrachochytrium dendrobatidis) using Xenopus laevis. , Gibble RE, Rollins-Smith L , Baer KN., Ecotoxicol Environ Saf. October 1, 2008; 71 (2): 506-13.
Predicted disease susceptibility in a Panamanian amphibian assemblage based on skin peptide defenses. , Woodhams DC, Voyles J, Lips KR, Carey C, Rollins-Smith LA ., J Wildl Dis. April 1, 2006; 42 (2): 207-18.
UVB dose-toxicity thresholds and steady-state DNA-photoproduct levels during chronic irradiation of inbred Xenopus laevis tadpoles. , Pandelova I, Hewitt SR, Rollins-Smith LA , Hays JB., Photochem Photobiol. January 1, 2006; 82 (4): 1080-7.
An amphibian model to test the effects of xenobiotic chemicals on development of the hematopoietic system. , Rollins-Smith LA , Hopkins BD, Reinert LK., Environ Toxicol Chem. December 1, 2004; 23 (12): 2863-7.
Effects of agricultural pesticides on the immune system of Xenopus laevis and Rana pipiens. , Christin MS, Ménard L, Gendron AD, Ruby S, Cyr D, Marcogliese DJ, Rollins-Smith L , Fournier M., Aquat Toxicol. March 30, 2004; 67 (1): 33-43.
Pituitary involvement in T cell renewal during development and metamorphosis of Xenopus laevis. , Rollins-Smith LA , Davis AT, Reinert LK., Brain Behav Immun. September 1, 2000; 14 (3): 185-97.
Amphibian declines: an immunological perspective. , Carey C, Cohen N , Rollins-Smith L ., Dev Comp Immunol. September 1, 1999; 23 (6): 459-72.
In vitro studies of spontaneous and corticosteroid-induced apoptosis of lymphocyte populations from metamorphosing frogs/RU486 inhibition. , Barker KS, Davis AT, Li B, Rollins-Smith LA ., Brain Behav Immun. June 1, 1997; 11 (2): 119-31.
Involvement of glucocorticoids in the reorganization of the amphibian immune system at metamorphosis. , Rollins-Smith LA , Barker KS, Davis AT., Dev Immunol. January 1, 1997; 5 (2): 145-52.
Involvement of thyroid hormones in the expression of MHC class I antigens during ontogeny in Xenopus. , Rollins-Smith LA , Flajnik MF , Blair PJ, Davis AT, Green WF., Dev Immunol. January 1, 1997; 5 (2): 133-44.
Late thymectomy in Xenopus tadpoles reveals a population of T cells that persists through metamorphosis. , Rollins-Smith LA , Needham DA, Davis AT, Blair PJ., Dev Comp Immunol. January 1, 1996; 20 (3): 165-74.
The effects of corticosteroid hormones and thyroid hormones on lymphocyte viability and proliferation during development and metamorphosis of Xenopus laevis. , Rollins-Smith LA , Blair PJ., Differentiation. October 1, 1993; 54 (3): 155-60.
Effects of thyroid hormone deprivation on immunity in postmetamorphic frogs. , Rollins-Smith LA , Davis AT, Blair PJ., Dev Comp Immunol. January 1, 1993; 17 (2): 157-64.
Thymus ontogeny in frogs: T-cell renewal at metamorphosis. , Rollins-Smith LA , Blair PJ, Davis AT., Dev Immunol. January 1, 1992; 2 (3): 207-13.
Immune responses of intact and embryonically enucleated frogs to self- lens antigens. , Rollins-Smith LA , Parsons SC, Cohen N ., J Immunol. November 15, 1990; 145 (10): 3262-7.
Contribution of ventral blood island mesoderm to hematopoiesis in postmetamorphic and metamorphosis-inhibited Xenopus laevis. , Rollins-Smith LA , Blair P., Dev Biol. November 1, 1990; 142 (1): 178-83.
Expression of class II major histocompatibility complex antigens on adult T cells in Xenopus is metamorphosis-dependent. , Rollins-Smith LA , Blair P., Dev Immunol. January 1, 1990; 1 (2): 97-104.
Effects of thyroxine-driven precocious metamorphosis on maturation of adult-type allograft rejection responses in early thyroidectomized frogs. , Rollins-Smith LA , Parsons SC, Cohen N ., Differentiation. May 1, 1988; 37 (3): 180-5.
During frog ontogeny, PHA and Con A responsiveness of splenocytes precedes that of thymocytes. , Rollins-Smith LA , Parsons SC, Cohen N ., Immunology. July 1, 1984; 52 (3): 491-500.
Identification and treatment of a lethal nematode (Capillaria xenopodis) infestation in the South African frog, Xenopus laevis. , Cohen N , Effrige NJ, Parsons SC, Rollins-Smith LA , Nagata S , Albright D., Dev Comp Immunol. January 1, 1984; 8 (3): 739-41.
Mitogenic responses of frog lymphocytes to crude and purified preparations of bacterial lipopolysaccharide (LPS). , Bleicher PA, Rollins-Smith LA , Jacobs DM, Cohen N ., Dev Comp Immunol. January 1, 1983; 7 (3): 483-96.
Self- pituitary grafts are not rejected by frogs deprived of their pituitary anlagen as embryos. , Rollins-Smith LA , Cohen N ., Nature. October 28, 1982; 299 (5886): 820-1.