Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (42)
XB-PERS-4899

Publications By Louise A Rollins-Smith

???pagination.result.count???

???pagination.result.page??? 1


The future of amphibian immunology: Opportunities and challenges., Rollins-Smith LA., Dev Comp Immunol. November 3, 2024; 160 105237.


Amphibian mast cells serve as barriers to chytrid fungus infections., Hauser KA, Garvey CN, Crow RS, Hossainey MRH, Howard DT, Ranganathan N, Gentry LK, Yaparla A, Kalia N, Zelle M, Jones EJ, Duttargi AN, Rollins-Smith LA, Muletz-Wolz CR, Grayfer L., Elife. July 31, 2024; 12   


Heat stress and amphibian immunity in a time of climate change., Rollins-Smith LA, Le Sage EH., Philos Trans R Soc Lond B Biol Sci. July 31, 2023; 378 (1882): 20220132.


The importance of antimicrobial peptides (AMPs) in amphibian skin defense., Rollins-Smith LA., Dev Comp Immunol. May 1, 2023; 142 104657.   


Lymphocyte Deficiency Induced by Sublethal Irradiation in Xenopus., Rollins-Smith LA, Robert J., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):


Amphibian immunity-stress, disease, and climate change., Rollins-Smith LA., Dev Comp Immunol. January 1, 2017; 66 111-119.   


Using "Omics" and Integrated Multi-Omics Approaches to Guide Probiotic Selection to Mitigate Chytridiomycosis and Other Emerging Infectious Diseases., Rebollar EA, Antwis RE, Becker MH, Belden LK, Bletz MC, Brucker RM, Harrison XA, Hughey MC, Kueneman JG, Loudon AH, McKenzie V, Medina D, Minbiole KP, Rollins-Smith LA, Walke JB, Weiss S, Woodhams DC, Harris RN., Front Microbiol. January 1, 2016; 7 68.


Immunomodulatory metabolites released by the frog-killing fungus Batrachochytrium dendrobatidis., Rollins-Smith LA, Fites JS, Reinert LK, Shiakolas AR, Umile TP, Minbiole KP., Infect Immun. December 1, 2015; 83 (12): 4565-70.


Correlates of virulence in a frog-killing fungal pathogen: evidence from a California amphibian decline., Piovia-Scott J, Pope K, Worth SJ, Rosenblum EB, Poorten T, Refsnider J, Rollins-Smith LA, Reinert LK, Wells HL, Rejmanek D, Lawler S, Foley J., ISME J. July 1, 2015; 9 (7): 1570-8.


Coqui frogs persist with the deadly chytrid fungus despite a lack of defensive antimicrobial peptides., Rollins-Smith LA, Reinert LK, Burrowes PA., Dis Aquat Organ. February 10, 2015; 113 (1): 81-3.


Inhibition of local immune responses by the frog-killing fungus Batrachochytrium dendrobatidis., Fites JS, Reinert LK, Chappell TM, Rollins-Smith LA., Infect Immun. November 1, 2014; 82 (11): 4698-706.   


Amphibians acquire resistance to live and dead fungus overcoming fungal immunosuppression., McMahon TA, Sears BF, Venesky MD, Bessler SM, Brown JM, Deutsch K, Halstead NT, Lentz G, Tenouri N, Young S, Civitello DJ, Ortega N, Fites JS, Reinert LK, Rollins-Smith LA, Raffel TR, Rohr JR., Nature. July 10, 2014; 511 (7508): 224-7.


Evaluation of amphotericin B and chloramphenicol as alternative drugs for treatment of chytridiomycosis and their impacts on innate skin defenses., Holden WM, Ebert AR, Canning PF, Rollins-Smith LA., Appl Environ Microbiol. July 1, 2014; 80 (13): 4034-41.


Nikkomycin Z is an effective inhibitor of the chytrid fungus linked to global amphibian declines., Holden WM, Fites JS, Reinert LK, Rollins-Smith LA., Fungal Biol. January 1, 2014; 118 (1): 48-60.   


The invasive chytrid fungus of amphibians paralyzes lymphocyte responses., Fites JS, Ramsey JP, Holden WM, Collier SP, Sutherland DM, Reinert LK, Gayek AS, Dermody TS, Aune TM, Oswald-Richter K, Rollins-Smith LA., Science. October 18, 2013; 342 (6156): 366-9.


Norepinephrine depletion of antimicrobial peptides from the skin glands of Xenopus laevis., Gammill WM, Fites JS, Rollins-Smith LA., Dev Comp Immunol. May 1, 2012; 37 (1): 19-27.


Treatment of amphibians infected with chytrid fungus: learning from failed trials with itraconazole, antimicrobial peptides, bacteria, and heat therapy., Woodhams DC, Geiger CC, Reinert LK, Rollins-Smith LA, Lam B, Harris RN, Briggs CJ, Vredenburg VT, Voyles J., Dis Aquat Organ. February 17, 2012; 98 (1): 11-25.   


Amphibian immune defenses against chytridiomycosis: impacts of changing environments., Rollins-Smith LA, Ramsey JP, Pask JD, Reinert LK, Woodhams DC., Integr Comp Biol. October 1, 2011; 51 (4): 552-62.   


Immune defenses against Batrachochytrium dendrobatidis, a fungus linked to global amphibian declines, in the South African clawed frog, Xenopus laevis., Ramsey JP, Reinert LK, Harper LK, Woodhams DC, Rollins-Smith LA., Infect Immun. September 1, 2010; 78 (9): 3981-92.


Immune defenses of Xenopus laevis against Batrachochytrium dendrobatidis., Rollins-Smith LA, Ramsey JP, Reinert LK, Woodhams DC, Livo LJ, Carey C., Front Biosci (Schol Ed). June 1, 2009; 1 (1): 68-91.


Development of an assay for testing the antimicrobial activity of skin peptides against the amphibian chytrid fungus (Batrachochytrium dendrobatidis) using Xenopus laevis., Gibble RE, Rollins-Smith L, Baer KN., Ecotoxicol Environ Saf. October 1, 2008; 71 (2): 506-13.


Predicted disease susceptibility in a Panamanian amphibian assemblage based on skin peptide defenses., Woodhams DC, Voyles J, Lips KR, Carey C, Rollins-Smith LA., J Wildl Dis. April 1, 2006; 42 (2): 207-18.


UVB dose-toxicity thresholds and steady-state DNA-photoproduct levels during chronic irradiation of inbred Xenopus laevis tadpoles., Pandelova I, Hewitt SR, Rollins-Smith LA, Hays JB., Photochem Photobiol. January 1, 2006; 82 (4): 1080-7.


An amphibian model to test the effects of xenobiotic chemicals on development of the hematopoietic system., Rollins-Smith LA, Hopkins BD, Reinert LK., Environ Toxicol Chem. December 1, 2004; 23 (12): 2863-7.


Effects of agricultural pesticides on the immune system of Xenopus laevis and Rana pipiens., Christin MS, Ménard L, Gendron AD, Ruby S, Cyr D, Marcogliese DJ, Rollins-Smith L, Fournier M., Aquat Toxicol. March 30, 2004; 67 (1): 33-43.


Pituitary involvement in T cell renewal during development and metamorphosis of Xenopus laevis., Rollins-Smith LA, Davis AT, Reinert LK., Brain Behav Immun. September 1, 2000; 14 (3): 185-97.


Amphibian declines: an immunological perspective., Carey C, Cohen N, Rollins-Smith L., Dev Comp Immunol. September 1, 1999; 23 (6): 459-72.


In vitro studies of spontaneous and corticosteroid-induced apoptosis of lymphocyte populations from metamorphosing frogs/RU486 inhibition., Barker KS, Davis AT, Li B, Rollins-Smith LA., Brain Behav Immun. June 1, 1997; 11 (2): 119-31.


Involvement of glucocorticoids in the reorganization of the amphibian immune system at metamorphosis., Rollins-Smith LA, Barker KS, Davis AT., Dev Immunol. January 1, 1997; 5 (2): 145-52.


Involvement of thyroid hormones in the expression of MHC class I antigens during ontogeny in Xenopus., Rollins-Smith LA, Flajnik MF, Blair PJ, Davis AT, Green WF., Dev Immunol. January 1, 1997; 5 (2): 133-44.


Late thymectomy in Xenopus tadpoles reveals a population of T cells that persists through metamorphosis., Rollins-Smith LA, Needham DA, Davis AT, Blair PJ., Dev Comp Immunol. January 1, 1996; 20 (3): 165-74.


The effects of corticosteroid hormones and thyroid hormones on lymphocyte viability and proliferation during development and metamorphosis of Xenopus laevis., Rollins-Smith LA, Blair PJ., Differentiation. October 1, 1993; 54 (3): 155-60.


Effects of thyroid hormone deprivation on immunity in postmetamorphic frogs., Rollins-Smith LA, Davis AT, Blair PJ., Dev Comp Immunol. January 1, 1993; 17 (2): 157-64.


Thymus ontogeny in frogs: T-cell renewal at metamorphosis., Rollins-Smith LA, Blair PJ, Davis AT., Dev Immunol. January 1, 1992; 2 (3): 207-13.


Immune responses of intact and embryonically enucleated frogs to self-lens antigens., Rollins-Smith LA, Parsons SC, Cohen N., J Immunol. November 15, 1990; 145 (10): 3262-7.


Contribution of ventral blood island mesoderm to hematopoiesis in postmetamorphic and metamorphosis-inhibited Xenopus laevis., Rollins-Smith LA, Blair P., Dev Biol. November 1, 1990; 142 (1): 178-83.


Expression of class II major histocompatibility complex antigens on adult T cells in Xenopus is metamorphosis-dependent., Rollins-Smith LA, Blair P., Dev Immunol. January 1, 1990; 1 (2): 97-104.


Effects of thyroxine-driven precocious metamorphosis on maturation of adult-type allograft rejection responses in early thyroidectomized frogs., Rollins-Smith LA, Parsons SC, Cohen N., Differentiation. May 1, 1988; 37 (3): 180-5.


During frog ontogeny, PHA and Con A responsiveness of splenocytes precedes that of thymocytes., Rollins-Smith LA, Parsons SC, Cohen N., Immunology. July 1, 1984; 52 (3): 491-500.


Identification and treatment of a lethal nematode (Capillaria xenopodis) infestation in the South African frog, Xenopus laevis., Cohen N, Effrige NJ, Parsons SC, Rollins-Smith LA, Nagata S, Albright D., Dev Comp Immunol. January 1, 1984; 8 (3): 739-41.


Mitogenic responses of frog lymphocytes to crude and purified preparations of bacterial lipopolysaccharide (LPS)., Bleicher PA, Rollins-Smith LA, Jacobs DM, Cohen N., Dev Comp Immunol. January 1, 1983; 7 (3): 483-96.


Self-pituitary grafts are not rejected by frogs deprived of their pituitary anlagen as embryos., Rollins-Smith LA, Cohen N., Nature. October 28, 1982; 299 (5886): 820-1.

???pagination.result.page??? 1