Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (50)
XB-PERS-511

Publications By Dan F. Bogenhagen

???pagination.result.count???

???pagination.result.page??? 1


Protein components of mitochondrial DNA nucleoids in higher eukaryotes., Bogenhagen DF, Wang Y, Shen EL, Kobayashi R., Mol Cell Proteomics. November 1, 2003; 2 (11): 1205-16.


Purification of mitochondria for enzymes involved in nucleic acid transactions., Bogenhagen DF., Methods Mol Biol. January 1, 2002; 197 199-210.


Two forms of mitochondrial DNA ligase III are produced in Xenopus laevis oocytes., Perez-Jannotti RM, Klein SM, Bogenhagen DF., J Biol Chem. December 28, 2001; 276 (52): 48978-87.


Developmentally-regulated packaging of mitochondrial DNA by the HMG-box protein mtTFA during Xenopus oogenesis., Shen EL, Bogenhagen DF., Nucleic Acids Res. July 1, 2001; 29 (13): 2822-8.


Enzymology of mitochondrial base excision repair., Bogenhagen DF, Pinz KG, Perez-Jannotti RM., Prog Nucleic Acid Res Mol Biol. January 1, 2001; 68 257-71.


Protein sequences conserved in prokaryotic aminoacyl-tRNA synthetases are important for the activity of the processivity factor of human mitochondrial DNA polymerase., Carrodeguas JA, Bogenhagen DF., Nucleic Acids Res. March 1, 2000; 28 (5): 1237-44.   


The accessory subunit of Xenopus laevis mitochondrial DNA polymerase gamma increases processivity of the catalytic subunit of human DNA polymerase gamma and is related to class II aminoacyl-tRNA synthetases., Carrodeguas JA, Kobayashi R, Lim SE, Copeland WC, Bogenhagen DF., Mol Cell Biol. June 1, 1999; 19 (6): 4039-46.


The action of DNA ligase at abasic sites in DNA., Bogenhagen DF, Pinz KG., J Biol Chem. April 3, 1998; 273 (14): 7888-93.


Efficient repair of abasic sites in DNA by mitochondrial enzymes., Pinz KG, Bogenhagen DF., Mol Cell Biol. March 1, 1998; 18 (3): 1257-65.


The HMG-box mitochondrial transcription factor xl-mtTFA binds DNA as a tetramer to activate bidirectional transcription., Antoshechkin I, Bogenhagen DF, Mastrangelo IA., EMBO J. June 2, 1997; 16 (11): 3198-206.


Termination within oligo(dT) tracts in template DNA by DNA polymerase gamma occurs with formation of a DNA triplex structure and is relieved by mitochondrial single-stranded DNA-binding protein., Mikhailov VS, Bogenhagen DF., J Biol Chem. November 29, 1996; 271 (48): 30774-80.


Cloning and characterization of the gene for the somatic form of DNA topoisomerase I from Xenopus laevis., Pandit SD, Richard RE, Sternglanz R, Bogenhagen DF., Nucleic Acids Res. September 15, 1996; 24 (18): 3593-600.


Effects of Xenopus laevis mitochondrial single-stranded DNA-binding protein on primer-template binding and 3'-->5' exonuclease activity of DNA polymerase gamma., Mikhailov VS, Bogenhagen DF., J Biol Chem. August 2, 1996; 271 (31): 18939-46.


Interaction of mtTFB and mtRNA polymerase at core promoters for transcription of Xenopus laevis mtDNA., Bogenhagen DF., J Biol Chem. May 17, 1996; 271 (20): 12036-41.


The gamma subfamily of DNA polymerases: cloning of a developmentally regulated cDNA encoding Xenopus laevis mitochondrial DNA polymerase gamma., Ye F, Carrodeguas JA, Bogenhagen DF., Nucleic Acids Res. April 15, 1996; 24 (8): 1481-8.


Distinct roles for two purified factors in transcription of Xenopus mitochondrial DNA., Antoshechkin I, Bogenhagen DF., Mol Cell Biol. December 1, 1995; 15 (12): 7032-42.


Action of mitochondrial DNA polymerase gamma at sites of base loss or oxidative damage., Pinz KG, Shibutani S, Bogenhagen DF., J Biol Chem. April 21, 1995; 270 (16): 9202-6.


Proliferating cell nuclear antigen-dependent abasic site repair in Xenopus laevis oocytes: an alternative pathway of base excision DNA repair., Matsumoto Y, Kim K, Bogenhagen DF., Mol Cell Biol. September 1, 1994; 14 (9): 6187-97.


Proteolytic footprinting of transcription factor TFIIIA reveals different tightly binding sites for 5S RNA and 5S DNA., Bogenhagen DF., Mol Cell Biol. September 1, 1993; 13 (9): 5149-58.


Binding of TFIIIA to derivatives of 5S RNA containing sequence substitutions or deletions defines a minimal TFIIIA binding site., Bogenhagen DF, Sands MS., Nucleic Acids Res. June 11, 1992; 20 (11): 2639-45.


Acetylaminofluorene and aminofluorene adducts inhibit in vitro transcription of a Xenopus 5S RNA gene only when located on the coding strand., Chen YH, Matsumoto Y, Shibutani S, Bogenhagen DF., Proc Natl Acad Sci U S A. November 1, 1991; 88 (21): 9583-7.


Repair of a synthetic abasic site involves concerted reactions of DNA synthesis followed by excision and ligation., Matsumoto Y, Bogenhagen DF., Mol Cell Biol. September 1, 1991; 11 (9): 4441-7.


The 165-kDa DNA topoisomerase I from Xenopus laevis oocytes is a tissue-specific variant., Richard RE, Bogenhagen DF., Dev Biol. July 1, 1991; 146 (1): 4-11.


Two zinc finger proteins from Xenopus laevis bind the same region of 5S RNA but with different nuclease protection patterns., Sands MS, Bogenhagen DF., Nucleic Acids Res. April 25, 1991; 19 (8): 1797-803.


The carboxyterminal zinc fingers of TFIIIA interact with the tip of helix V of 5S RNA in the 7S ribonucleoprotein particle., Sands MS, Bogenhagen DF., Nucleic Acids Res. April 25, 1991; 19 (8): 1791-6.


Mapping light strand transcripts near the origin of replication of Xenopus laevis mitochondrial DNA., Bogenhagen DF, Morvillo MV., Nucleic Acids Res. November 11, 1990; 18 (21): 6377-83.


DNA polymerase gamma from Xenopus laevis. II. A 3'----5' exonuclease is tightly associated with the DNA polymerase activity., Insdorf NF, Bogenhagen DF., J Biol Chem. December 25, 1989; 264 (36): 21498-503.


DNA polymerase gamma from Xenopus laevis. I. The identification of a high molecular weight catalytic subunit by a novel DNA polymerase photolabeling procedure., Insdorf NF, Bogenhagen DF., J Biol Chem. December 25, 1989; 264 (36): 21491-7.


Quantitation of type II topoisomerase in oocytes and eggs of Xenopus laevis., Luke M, Bogenhagen DF., Dev Biol. December 1, 1989; 136 (2): 459-68.


Repair of a synthetic abasic site in DNA in a Xenopus laevis oocyte extract., Matsumoto Y, Bogenhagen DF., Mol Cell Biol. September 1, 1989; 9 (9): 3750-7.


A high molecular weight topoisomerase I from Xenopus laevis ovaries., Richard RE, Bogenhagen DF., J Biol Chem. March 15, 1989; 264 (8): 4704-9.


Template sequences required for transcription of Xenopus laevis mitochondrial DNA from two bidirectional promoters., Bogenhagen DF, Romanelli MF., Mol Cell Biol. July 1, 1988; 8 (7): 2917-24.


Purification of Xenopus laevis mitochondrial RNA polymerase and identification of a dissociable factor required for specific transcription., Bogenhagen DF, Insdorf NF., Mol Cell Biol. July 1, 1988; 8 (7): 2910-6.


TFIIIA binds with equal affinity to somatic and major oocyte 5S RNA genes., McConkey GA, Bogenhagen DF., Genes Dev. February 1, 1988; 2 (2): 205-14.


TFIIIA binds to different domains of 5S RNA and the Xenopus borealis 5S RNA gene., Sands MS, Bogenhagen DF., Mol Cell Biol. November 1, 1987; 7 (11): 3985-93.


Transition mutations within the Xenopus borealis somatic 5S RNA gene can have independent effects on transcription and TFIIIA binding., McConkey GA, Bogenhagen DF., Mol Cell Biol. January 1, 1987; 7 (1): 486-94.


Accurate in vitro transcription of Xenopus laevis mitochondrial DNA from two bidirectional promoters., Bogenhagen DF, Yoza BK., Mol Cell Biol. July 1, 1986; 6 (7): 2543-50.


Identification of initiation sites for transcription of Xenopus laevis mitochondrial DNA., Bogenhagen DF, Yoza BK, Cairns SS., J Biol Chem. June 25, 1986; 261 (18): 8488-94.


Mapping of the displacement loop within the nucleotide sequence of Xenopus laevis mitochondrial DNA., Cairns SS, Bogenhagen DF., J Biol Chem. June 25, 1986; 261 (18): 8481-7.


The intragenic control region of the Xenopus 5 S RNA gene contains two factor A binding domains that must be aligned properly for efficient transcription initiation., Bogenhagen DF., J Biol Chem. May 25, 1985; 260 (10): 6466-71.


Binding of Xenopus transcription factor A to 5S RNA and to single stranded DNA., Hanas JS, Bogenhagen DF, Wu CW., Nucleic Acids Res. March 26, 1984; 12 (6): 2745-58.


DNA unwinding ability of Xenopus transcription factor A., Hanas JS, Bogenhagen DF, Wu CW., Nucleic Acids Res. January 25, 1984; 12 (2): 1265-76.


Xenopus transcription factor A requires zinc for binding to the 5 S RNA gene., Hanas JS, Hazuda DJ, Bogenhagen DF, Wu FY, Wu CW., J Biol Chem. December 10, 1983; 258 (23): 14120-5.


Purified RNA polymerase III accurately and efficiently terminates transcription of 5S RNA genes., Cozzarelli NR, Gerrard SP, Schlissel M, Brown DD, Bogenhagen DF., Cell. October 1, 1983; 34 (3): 829-35.


Cooperative model for the binding of Xenopus transcription factor A to the 5S RNA gene., Hanas JS, Bogenhagen DF, Wu CW., Proc Natl Acad Sci U S A. April 1, 1983; 80 (8): 2142-5.


Stable transcription complexes of Xenopus 5S RNA genes: a means to maintain the differentiated state., Bogenhagen DF, Wormington WM, Brown DD., Cell. February 1, 1982; 28 (2): 413-21.


A quantitative assay for Xenopus 5S RNA gene transcription in vitro., Wormington WM, Bogenhagen DF, Jordan E, Brown DD., Cell. June 1, 1981; 24 (3): 809-17.


Nucleotide sequences in Xenopus 5S DNA required for transcription termination., Bogenhagen DF, Brown DD., Cell. April 1, 1981; 24 (1): 261-70.


A control region in the center of the 5S RNA gene directs specific initiation of transcription: II. The 3'' border of the region., Bogenhagen DF, Sakonju S, Brown DD., Cell. January 1, 1980; 19 (1): 27-35.


A control region in the center of the 5S RNA gene directs specific initiation of transcription: I. The 5' border of the region., Sakonju S, Bogenhagen DF, Brown DD., Cell. January 1, 1980; 19 (1): 13-25.

???pagination.result.page??? 1