Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (61)
XB-PERS-546

Publications By Rick Elinson

???pagination.result.count???

???pagination.result.page??? 1 2 ???pagination.result.next???


Commitment to nutritional endoderm in Eleutherodactylus coqui involves altered nodal signaling and global transcriptional repression., Chatterjee S, Elinson RP., J Exp Zool B Mol Dev Evol. January 1, 2014; 322 (1): 27-44.


Characterization of the nutritional endoderm in the direct developing frog Eleutherodactylus coqui., Karadge U, Elinson RP., Dev Genes Evol. November 1, 2013; 223 (6): 351-62.


Expression of a cardiac myosin gene in non-heart tissues of developing frogs., Nath K, Fisher C, Elinson RP., Dev Genes Evol. May 1, 2013; 223 (3): 189-93.


Metamorphosis in a frog that does not have a tadpole., Elinson RP., Curr Top Dev Biol. January 1, 2013; 103 259-76.


Expression of cyclin D1, cyclin D2, and N-myc in embryos of the direct developing frog Eleutherodactylus coqui, with a focus on limbs., Nath K, Fisher C, Elinson RP., Gene Expr Patterns. January 1, 2013; 13 (5-6): 142-9.


Developmental diversity of amphibians., Elinson RP, del Pino EM., Wiley Interdiscip Rev Dev Biol. January 1, 2012; 1 (3): 345-69.


Germ plasm in Eleutherodactylus coqui, a direct developing frog with large eggs., Elinson RP, Sabo MC, Fisher C, Yamaguchi T, Orii H, Nath K., Evodevo. October 6, 2011; 2 20.   


Novel regulation of yolk utilization by thyroid hormone in embryos of the direct developing frog Eleutherodactylus coqui., Singamsetty S, Elinson RP., Evol Dev. January 1, 2010; 12 (5): 437-48.


Lbx1 expression and frog limb development., Sabo MC, Nath K, Elinson RP., Dev Genes Evol. December 1, 2009; 219 (11-12): 609-12.


Raldh expression in embryos of the direct developing frog Eleutherodactylus coqui and the conserved retinoic acid requirement for forelimb initiation., Elinson RP, Walton Z, Nath K., J Exp Zool B Mol Dev Evol. November 15, 2008; 310 (7): 588-95.


Muscle development in a biphasic animal: the frog., Elinson RP., Dev Dyn. September 1, 2007; 236 (9): 2444-53.


Comparative analysis of Xenopus VegT, the meso-endodermal determinant, identifies an unusual conserved sequence., Pérez O, Benítez MS, Nath K, Heasman J, Del Pino EM, Elinson RP., Differentiation. July 1, 2007; 75 (6): 559-65.   


Nutritional endoderm in a direct developing frog: a potential parallel to the evolution of the amniote egg., Buchholz DR, Singamsetty S, Karadge U, Williamson S, Langer CE, Elinson RP., Dev Dyn. May 1, 2007; 236 (5): 1259-72.


RNA of AmVegT, the axolotl orthologue of the Xenopus meso-endodermal determinant, is not localized in the oocyte., Nath K, Elinson RP., Gene Expr Patterns. January 1, 2007; 7 (1-2): 197-201.   


Status of RNAs, localized in Xenopus laevis oocytes, in the frogs Rana pipiens and Eleutherodactylus coqui., Nath K, Boorech JL, Beckham YM, Burns MM, Elinson RP., J Exp Zool B Mol Dev Evol. January 15, 2005; 304 (1): 28-39.


Antero-posterior tissue polarity links mesoderm convergent extension to axial patterning., Ninomiya H, Elinson RP, Winklbauer R., Nature. July 15, 2004; 430 (6997): 364-7.


Parallel microtubules and other conserved elements of dorsal axial specification in the direct developing frog, Eleutherodactylus coqui., Elinson RP, Ninomiya H., Dev Genes Evol. February 1, 2003; 213 (1): 28-34.


Localization of RNAs in oocytes of Eleutherodactylus coqui, a direct developing frog, differs from Xenopus laevis., Beckham YM, Nath K, Elinson RP., Evol Dev. January 1, 2003; 5 (6): 562-71.


Development in frogs with large eggs and the origin of amniotes., Elinson RP, Beckham Y., Zoology (Jena). January 1, 2002; 105 (2): 105-17.


Mesoderm formation in Eleutherodactylus coqui: body patterning in a frog with a large egg., Ninomiya H, Zhang Q, Elinson RP., Dev Biol. August 1, 2001; 236 (1): 109-23.   


RNA anchoring in the vegetal cortex of the Xenopus oocyte., Alarcón VB, Elinson RP., J Cell Sci. May 1, 2001; 114 (Pt 9): 1731-41.   


Frogs without polliwogs: evolution of anuran direct development., Callery EM, Fang H, Elinson RP., Bioessays. March 1, 2001; 23 (3): 233-41.


Opercular development and ontogenetic re-organization in a direct-developing frog., Callery EM, Elinson RP., Dev Genes Evol. July 1, 2000; 210 (7): 377-81.


Thyroid hormone-dependent metamorphosis in a direct developing frog., Callery EM, Elinson RP., Proc Natl Acad Sci U S A. March 14, 2000; 97 (6): 2615-20.


Ectopic expression of Xenopus noggin RNA induces complete secondary body axes in embryos of the direct developing frog Eleutherodactylus coqui., Fang H, Marikawa Y, Elinson RP., Dev Genes Evol. January 1, 2000; 210 (1): 21-7.


Relationship of vegetal cortical dorsal factors in the Xenopus egg with the Wnt/beta-catenin signaling pathway., Marikawa Y, Elinson RP., Mech Dev. December 1, 1999; 89 (1-2): 93-102.


Novel structural elements identified during tail resorption in Xenopus laevis metamorphosis: lessons from tailed frogs., Elinson RP, Remo B, Brown DD., Dev Biol. November 15, 1999; 215 (2): 243-52.   


Evolutionary alteration in anterior patterning: otx2 expression in the direct developing frog Eleutherodactylus coqui., Fang H, Elinson RP., Dev Biol. January 15, 1999; 205 (2): 233-9.   


Secondary coverage of the yolk by the body wall in the direct developing frog, Eleutherodactylus coqui: an unusual process for amphibian embryos., Elinson RP, Fang H., Dev Genes Evol. October 1, 1998; 208 (8): 457-66.


beta-TrCP is a negative regulator of Wnt/beta-catenin signaling pathway and dorsal axis formation in Xenopus embryos., Marikawa Y, Elinson RP., Mech Dev. September 1, 1998; 77 (1): 75-80.   


Limb development and evolution: a frog embryo with no apical ectodermal ridge (AER)., Richardson MK, Carl TF, Hanken J, Elinson RP, Cope C, Bagley P., J Anat. April 1, 1998; 192 ( Pt 3) 379-90.


Dorsal determinants in the Xenopus egg are firmly associated with the vegetal cortex and behave like activators of the Wnt pathway., Marikawa Y, Li Y, Elinson RP., Dev Biol. November 1, 1997; 191 (1): 69-79.


Animal and vegetal pole cells of early Xenopus embryos respond differently to maternal dorsal determinants: implications for the patterning of the organiser., Darras S, Marikawa Y, Elinson RP, Lemaire P., Development. November 1, 1997; 124 (21): 4275-86.   


Getting a head in frog development., Elinson RP., Biol Bull. February 1, 1997; 192 (1): 172-4.


Patterns of distal-less gene expression and inductive interactions in the head of the direct developing frog Eleutherodactylus coqui., Fang H, Elinson RP., Dev Biol. October 10, 1996; 179 (1): 160-72.   


Identification of new localized RNAs in the Xenopus oocyte by differential display PCR., Hudson JW, Alarcón VB, Elinson RP., Dev Genet. January 1, 1996; 19 (3): 190-8.   


Relationship between ectopic germinal vesicle breakdown in Xenopus oocytes and dorsal development of the embryo., Rivera-Bennetts AK, Elinson RP., Dev Growth Differ. December 1, 1995; 37 (6): 631-639.


Properties of the dorsal activity found in the vegetal cortical cytoplasm of Xenopus eggs., Holowacz T, Elinson RP., Development. September 1, 1995; 121 (9): 2789-98.


Specifying the dorsoanterior axis in frogs: 70 years since Spemann and Mangold., Elinson RP, Holowacz T., Curr Top Dev Biol. January 1, 1995; 30 253-85.


Isolated vegetal cortex from Xenopus oocytes selectively retains localized mRNAs., Elinson RP, King ML, Forristall C., Dev Biol. December 1, 1993; 160 (2): 554-62.


Cortical cytoplasm, which induces dorsal axis formation in Xenopus, is inactivated by UV irradiation of the oocyte., Holowacz T, Elinson RP., Development. September 1, 1993; 119 (1): 277-85.   


Inductive events in the patterning of the Xenopus laevis hatching and cement glands, two cell types which delimit head boundaries., Drysdale TA, Elinson RP., Dev Biol. July 1, 1993; 158 (1): 245-53.


Local alteration of cortical actin in Xenopus eggs by the fertilizing sperm., Chow RL, Elinson RP., Mol Reprod Dev. May 1, 1993; 35 (1): 69-75.


Cell Migration and Induction in the Development of the Surface Ectodermal Pattern of the Xenopus laevis Tadpole: (Xenopus/ciliated cell/hatching gland/cement gland/ectodermal differentiation)., Drysdale TA, Elinson RP., Dev Growth Differ. February 1, 1992; 34 (1): 51-59.


Microtubules and cytoplasmic reorganization in the frog egg., Houliston E, Elinson RP., Curr Top Dev Biol. January 1, 1992; 26 53-70.


Evidence for the involvement of microtubules, ER, and kinesin in the cortical rotation of fertilized frog eggs., Houliston E, Elinson RP., J Cell Biol. September 1, 1991; 114 (5): 1017-28.


Separation of an anterior inducing activity from development of dorsal axial mesoderm in large-headed frog embryos., Elinson RP., Dev Biol. May 1, 1991; 145 (1): 91-8.


Patterns of microtubule polymerization relating to cortical rotation in Xenopus laevis eggs., Houliston E, Elinson RP., Development. May 1, 1991; 112 (1): 107-17.   


Development of the Xenopus laevis hatching gland and its relationship to surface ectoderm patterning., Drysdale TA, Elinson RP., Development. February 1, 1991; 111 (2): 469-78.   


Control of sperm nuclear behavior in physiologically polyspermic newt eggs: possible involvement of MPF., Iwao Y, Elinson RP., Dev Biol. December 1, 1990; 142 (2): 301-12.

???pagination.result.page??? 1 2 ???pagination.result.next???