Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (108)
XB-PERS-625

Publications By Sally A Moody

???pagination.result.count???

???pagination.result.page??? 1 2 3 ???pagination.result.next???


Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes., Neal SJ, Rajasekaran A, Jusić N, Taylor L, Read M, Alfandari D, Pignoni F, Moody SA., J Exp Zool B Mol Dev Evol. May 1, 2024; 342 (3): 212-240.   


Cell lineage-guided mass spectrometry reveals increased energy metabolism and reactive oxygen species in the vertebrate organizer., Baxi AB, Li J, Quach VM, Pade LR, Moody SA, Nemes P., Proc Natl Acad Sci U S A. February 6, 2024; 121 (6): e2311625121.   


The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains., Marchak A, Neilson KM, Majumdar HD, Yamauchi K, Klein SL, Moody SA., Dev Dyn. December 1, 2023; 252 (12): 1407-1427.   


Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates., Baxi AB, Nemes P, Moody SA., iScience. September 15, 2023; 26 (9): 107665.   


Zmym4 is required for early cranial gene expression and craniofacial cartilage formation., Jourdeuil K, Neilson KM, Cousin H, Tavares ALP, Majumdar HD, Alfandari D, Moody SA., Front Cell Dev Biol. January 1, 2023; 11 1274788.   


Xenopus Explants and Transplants., Moody SA., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.top097337.


Normal Table of Xenopus development: a new graphical resource., Zahn N, James-Zorn C, Ponferrada VG, Adams DS, Grzymkowski J, Buchholz DR, Nascone-Yoder NM, Horb M, Moody SA, Vize PD, Zorn AM., Development. July 15, 2022; 149 (14):   


Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation., Gur M, Edri T, Moody SA, Fainsod A., Front Cell Dev Biol. January 1, 2022; 10 857230.   


Generation of a new six1-null line in Xenopus tropicalis for study of development and congenital disease., Coppenrath K, Tavares ALP, Shaidani NI, Wlizla M, Moody SA, Horb M., Genesis. December 1, 2021; 59 (12): e23453.   


Corrigendum: Lineage Tracing and Fate Mapping in Xenopus Embryos., Moody SA., Cold Spring Harb Protoc. October 1, 2021; 2021 (10): pdb.corr107781.


Sobp modulates the transcriptional activation of Six1 target genes and is required during craniofacial development., Tavares ALP, Jourdeuil K, Neilson KM, Majumdar HD, Moody SA., Development. September 1, 2021; 148 (17):   


Mutations in SIX1 Associated with Branchio-oto-Renal Syndrome (BOR) Differentially Affect Otic Expression of Putative Target Genes., Mehdizadeh T, Majumdar HD, Ahsan S, Tavares ALP, Moody SA., J Dev Biol. June 30, 2021; 9 (3):   


Altering metabolite distribution at Xenopus cleavage stages affects left-right gene expression asymmetries., Onjiko RM, Nemes P, Moody SA., Genesis. June 1, 2021; 59 (5-6): e23418.   


Mcrs1 interacts with Six1 to influence early craniofacial and otic development., Neilson KM, Keer S, Bousquet N, Macrorie O, Majumdar HD, Kenyon KL, Alfandari D, Moody SA., Dev Biol. November 1, 2020; 467 (1-2): 39-50.   


Natural size variation among embryos leads to the corresponding scaling in gene expression., Leibovich A, Edri T, Klein SL, Moody SA, Fainsod A., Dev Biol. June 15, 2020; 462 (2): 165-179.   


Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development., Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, Majumdar HD, Neilson KM, Moody SA., Dis Model Mech. March 3, 2020; 13 (3):   


Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos., Lombard-Banek C, Moody SA, Manzini MC, Nemes P., Anal Chem. April 2, 2019; 91 (7): 4797-4805.


Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation., Sullivan CH, Majumdar HD, Neilson KM, Moody SA., Dev Biol. February 1, 2019; 446 (1): 68-79.   


Cleavage Blastomere Deletion and Transplantation to Test Cell Fate Commitment in Xenopus., Moody SA., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):


Analysis of Cell Fate Commitment in Xenopus Embryos., Moody SA., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):


Cleavage Blastomere Explant Culture in Xenopus., Moody SA., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):


Microinjection of mRNAs and Oligonucleotides., Moody SA., Cold Spring Harb Protoc. December 3, 2018; 2018 (12):


Lineage Tracing and Fate Mapping in Xenopus Embryos., Moody SA., Cold Spring Harb Protoc. December 3, 2018; 2018 (12):


Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry., Baxi AB, Lombard-Banek C, Moody SA, Nemes P., ACS Chem Neurosci. August 15, 2018; 9 (8): 2064-2073.


Microprobe Capillary Electrophoresis Mass Spectrometry for Single-cell Metabolomics in Live Frog (Xenopus laevis) Embryos., Onjiko RM, Portero EP, Moody SA, Nemes P., J Vis Exp. December 22, 2017; (130):


Metabolic Comparison of Dorsal versus Ventral Cells Directly in the Live 8-cell Frog Embryo by Microprobe Single-cell CE-ESI-MS., Onjiko RM, Plotnick DO, Moody SA, Nemes P., Anal Methods. September 14, 2017; 9 (34): 4964-4970.


Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates., Marchak A, Grant PA, Neilson KM, Datta Majumdar H, Yaklichkin S, Johnson D, Moody SA., Dev Biol. September 1, 2017; 429 (1): 213-224.   


In Situ Microprobe Single-Cell Capillary Electrophoresis Mass Spectrometry: Metabolic Reorganization in Single Differentiating Cells in the Live Vertebrate (Xenopus laevis) Embryo., Onjiko RM, Portero EP, Moody SA, Nemes P., Anal Chem. July 5, 2017; 89 (13): 7069-7076.


Foxd4 is essential for establishing neural cell fate and for neuronal differentiation., Sherman JH, Karpinski BA, Fralish MS, Cappuzzo JM, Dhindsa DS, Thal AG, Moody SA, LaMantia AS, Maynard TM., Genesis. June 1, 2017; 55 (6):   


Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development., Neilson KM, Abbruzzesse G, Kenyon K, Bartolo V, Krohn P, Alfandari D, Moody SA., Dev Biol. January 15, 2017; 421 (2): 171-182.   


Using Xenopus to understand human disease and developmental disorders., Sater AK, Moody SA., Genesis. January 1, 2017; 55 (1-2):


Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS)., Lombard-Banek C, Reddy S, Moody SA, Nemes P., Mol Cell Proteomics. August 1, 2016; 15 (8): 2756-68.


High-Sensitivity Mass Spectrometry for Probing Gene Translation in Single Embryonic Cells in the Early Frog (Xenopus) Embryo., Lombard-Banek C, Moody SA, Nemes P., Front Cell Dev Biol. June 24, 2016; 4 100.   


Single-cell mass spectrometry with multi-solvent extraction identifies metabolic differences between left and right blastomeres in the 8-cell frog (Xenopus) embryo., Onjiko RM, Morris SE, Moody SA, Nemes P., Analyst. June 21, 2016; 141 (12): 3648-56.


Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm., Gaur S, Mandelbaum M, Herold M, Majumdar HD, Neilson KM, Maynard TM, Mood K, Daar IO, Moody SA., Genesis. June 1, 2016; 54 (6): 334-49.   


Single-Cell Mass Spectrometry for Discovery Proteomics: Quantifying Translational Cell Heterogeneity in the 16-Cell Frog (Xenopus) Embryo., Lombard-Banek C, Moody SA, Nemes P., Angew Chem Int Ed Engl. February 12, 2016; 55 (7): 2454-8.   


Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders., Moody SA, Neilson KM, Kenyon KL, Alfandari D, Pignoni F., Comp Biochem Physiol C Toxicol Pharmacol. December 1, 2015; 178 16-24.


Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo., Onjiko RM, Moody SA, Nemes P., Proc Natl Acad Sci U S A. May 26, 2015; 112 (21): 6545-50.


Early neural ectodermal genes are activated by Siamois and Twin during blastula stages., Klein SL, Moody SA., Genesis. May 1, 2015; 53 (5): 308-20.   


Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development., Yan B, Neilson KM, Ranganathan R, Maynard T, Streit A, Moody SA., Dev Dyn. February 1, 2015; 244 (2): 181-210.   


Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry., Shrestha B, Sripadi P, Reschke BR, Henderson HD, Powell MJ, Moody SA, Vertes A., PLoS One. December 15, 2014; 9 (12): e115173.   


Neural transcription factors: from embryos to neural stem cells., Lee HK, Lee HS, Moody SA., Mol Cells. October 31, 2014; 37 (10): 705-12.   


Establishing the pre-placodal region and breaking it into placodes with distinct identities., Saint-Jeannet JP, Moody SA., Dev Biol. May 1, 2014; 389 (1): 13-27.


Novel animal pole-enriched maternal mRNAs are preferentially expressed in neural ectoderm., Grant PA, Yan B, Johnson MA, Johnson DL, Moody SA., Dev Dyn. March 1, 2014; 243 (3): 478-96.   


Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome., Karpinski BA, Maynard TM, Fralish MS, Nuwayhid S, Zohn IE, Moody SA, LaMantia AS., Dis Model Mech. February 1, 2014; 7 (2): 245-57.   


On becoming neural: what the embryo can tell us about differentiating neural stem cells., Moody SA, Klein SL, Karpinski BA, Maynard TM, Lamantia AS., Am J Stem Cells. June 30, 2013; 2 (2): 74-94.   


Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes., Klein SL, Neilson KM, Orban J, Yaklichkin S, Hoffbauer J, Mood K, Daar IO, Moody SA., PLoS One. April 4, 2013; 8 (4): e61845.   


Blastomere explants to test for cell fate commitment during embryonic development., Grant PA, Herold MB, Moody SA., J Vis Exp. January 26, 2013; (71):


Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate., Neilson KM, Klein SL, Mhaske P, Mood K, Daar IO, Moody SA., Dev Biol. May 15, 2012; 365 (2): 363-75.   


Using 32-cell stage Xenopus embryos to probe PCP signaling., Lee HS, Sokol SY, Moody SA, Daar IO., Methods Mol Biol. January 1, 2012; 839 91-104.

???pagination.result.page??? 1 2 3 ???pagination.result.next???