???pagination.result.count???
Using Xenopus to discover new candidate genes involved in BOR and other congenital hearing loss syndromes. , Neal SJ, Rajasekaran A, Jusić N, Taylor L , Read M, Alfandari D , Pignoni F, Moody SA ., J Exp Zool B Mol Dev Evol. May 1, 2024; 342 (3): 212-240.
Cell lineage-guided mass spectrometry reveals increased energy metabolism and reactive oxygen species in the vertebrate organizer. , Baxi AB, Li J, Quach VM, Pade LR, Moody SA , Nemes P ., Proc Natl Acad Sci U S A. February 6, 2024; 121 (6): e2311625121.
The sulfotransferase XB5850668.L is required to apportion embryonic ectodermal domains. , Marchak A, Neilson KM , Majumdar HD, Yamauchi K, Klein SL, Moody SA ., Dev Dyn. December 1, 2023; 252 (12): 1407-1427.
Time-resolved quantitative proteomic analysis of the developing Xenopus otic vesicle reveals putative congenital hearing loss candidates. , Baxi AB, Nemes P , Moody SA ., iScience. September 15, 2023; 26 (9): 107665.
Zmym4 is required for early cranial gene expression and craniofacial cartilage formation. , Jourdeuil K, Neilson KM , Cousin H , Tavares ALP, Majumdar HD, Alfandari D , Moody SA ., Front Cell Dev Biol. January 1, 2023; 11 1274788.
Xenopus Explants and Transplants. , Moody SA ., Cold Spring Harb Protoc. November 1, 2022; 2022 (11): Pdb.top097337.
Normal Table of Xenopus development: a new graphical resource. , Zahn N , James-Zorn C , Ponferrada VG , Adams DS , Grzymkowski J, Buchholz DR , Nascone-Yoder NM , Horb M , Moody SA , Vize PD , Zorn AM ., Development. July 15, 2022; 149 (14):
Retinoic Acid is Required for Normal Morphogenetic Movements During Gastrulation. , Gur M, Edri T, Moody SA , Fainsod A ., Front Cell Dev Biol. January 1, 2022; 10 857230.
Generation of a new six1-null line in Xenopus tropicalis for study of development and congenital disease. , Coppenrath K , Tavares ALP, Shaidani NI , Wlizla M , Moody SA , Horb M ., Genesis. December 1, 2021; 59 (12): e23453.
Corrigendum: Lineage Tracing and Fate Mapping in Xenopus Embryos. , Moody SA ., Cold Spring Harb Protoc. October 1, 2021; 2021 (10): pdb.corr107781.
Sobp modulates the transcriptional activation of Six1 target genes and is required during craniofacial development. , Tavares ALP, Jourdeuil K, Neilson KM , Majumdar HD, Moody SA ., Development. September 1, 2021; 148 (17):
Mutations in SIX1 Associated with Branchio-oto-Renal Syndrome (BOR) Differentially Affect Otic Expression of Putative Target Genes. , Mehdizadeh T, Majumdar HD, Ahsan S, Tavares ALP, Moody SA ., J Dev Biol. June 30, 2021; 9 (3):
Altering metabolite distribution at Xenopus cleavage stages affects left- right gene expression asymmetries. , Onjiko RM, Nemes P , Moody SA ., Genesis. June 1, 2021; 59 (5-6): e23418.
Mcrs1 interacts with Six1 to influence early craniofacial and otic development. , Neilson KM , Keer S, Bousquet N, Macrorie O, Majumdar HD, Kenyon KL , Alfandari D , Moody SA ., Dev Biol. November 1, 2020; 467 (1-2): 39-50.
Natural size variation among embryos leads to the corresponding scaling in gene expression. , Leibovich A, Edri T, Klein SL, Moody SA , Fainsod A ., Dev Biol. June 15, 2020; 462 (2): 165-179.
Six1 proteins with human branchio-oto-renal mutations differentially affect cranial gene expression and otic development. , Shah AM, Krohn P, Baxi AB, Tavares ALP, Sullivan CH, Chillakuru YR, Majumdar HD, Neilson KM , Moody SA ., Dis Model Mech. March 3, 2020; 13 (3):
Microsampling Capillary Electrophoresis Mass Spectrometry Enables Single-Cell Proteomics in Complex Tissues: Developing Cell Clones in Live Xenopus laevis and Zebrafish Embryos. , Lombard-Banek C, Moody SA , Manzini MC, Nemes P ., Anal Chem. April 2, 2019; 91 (7): 4797-4805.
Six1 and Irx1 have reciprocal interactions during cranial placode and otic vesicle formation. , Sullivan CH, Majumdar HD, Neilson KM , Moody SA ., Dev Biol. February 1, 2019; 446 (1): 68-79.
Cleavage Blastomere Deletion and Transplantation to Test Cell Fate Commitment in Xenopus. , Moody SA ., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):
Analysis of Cell Fate Commitment in Xenopus Embryos. , Moody SA ., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):
Cleavage Blastomere Explant Culture in Xenopus. , Moody SA ., Cold Spring Harb Protoc. January 2, 2019; 2019 (1):
Microinjection of mRNAs and Oligonucleotides. , Moody SA ., Cold Spring Harb Protoc. December 3, 2018; 2018 (12):
Lineage Tracing and Fate Mapping in Xenopus Embryos. , Moody SA ., Cold Spring Harb Protoc. December 3, 2018; 2018 (12):
Proteomic Characterization of the Neural Ectoderm Fated Cell Clones in the Xenopus laevis Embryo by High-Resolution Mass Spectrometry. , Baxi AB, Lombard-Banek C, Moody SA , Nemes P ., ACS Chem Neurosci. August 15, 2018; 9 (8): 2064-2073.
Microprobe Capillary Electrophoresis Mass Spectrometry for Single-cell Metabolomics in Live Frog (Xenopus laevis) Embryos. , Onjiko RM, Portero EP, Moody SA , Nemes P ., J Vis Exp. December 22, 2017; (130):
Metabolic Comparison of Dorsal versus Ventral Cells Directly in the Live 8-cell Frog Embryo by Microprobe Single-cell CE-ESI-MS. , Onjiko RM, Plotnick DO, Moody SA , Nemes P ., Anal Methods. September 14, 2017; 9 (34): 4964-4970.
Wbp2nl has a developmental role in establishing neural and non-neural ectodermal fates. , Marchak A, Grant PA , Neilson KM , Datta Majumdar H, Yaklichkin S , Johnson D, Moody SA ., Dev Biol. September 1, 2017; 429 (1): 213-224.
In Situ Microprobe Single-Cell Capillary Electrophoresis Mass Spectrometry: Metabolic Reorganization in Single Differentiating Cells in the Live Vertebrate (Xenopus laevis) Embryo. , Onjiko RM, Portero EP, Moody SA , Nemes P ., Anal Chem. July 5, 2017; 89 (13): 7069-7076.
Foxd4 is essential for establishing neural cell fate and for neuronal differentiation. , Sherman JH, Karpinski BA, Fralish MS, Cappuzzo JM, Dhindsa DS, Thal AG, Moody SA , LaMantia AS, Maynard TM., Genesis. June 1, 2017; 55 (6):
Pa2G4 is a novel Six1 co-factor that is required for neural crest and otic development. , Neilson KM , Abbruzzesse G , Kenyon K , Bartolo V, Krohn P, Alfandari D , Moody SA ., Dev Biol. January 15, 2017; 421 (2): 171-182.
Using Xenopus to understand human disease and developmental disorders. , Sater AK , Moody SA ., Genesis. January 1, 2017; 55 (1-2):
Label-free Quantification of Proteins in Single Embryonic Cells with Neural Fate in the Cleavage-Stage Frog (Xenopus laevis) Embryo using Capillary Electrophoresis Electrospray Ionization High-Resolution Mass Spectrometry (CE-ESI-HRMS). , Lombard-Banek C, Reddy S, Moody SA , Nemes P ., Mol Cell Proteomics. August 1, 2016; 15 (8): 2756-68.
High-Sensitivity Mass Spectrometry for Probing Gene Translation in Single Embryonic Cells in the Early Frog (Xenopus) Embryo. , Lombard-Banek C, Moody SA , Nemes P ., Front Cell Dev Biol. June 24, 2016; 4 100.
Single-cell mass spectrometry with multi-solvent extraction identifies metabolic differences between left and right blastomeres in the 8-cell frog (Xenopus) embryo. , Onjiko RM, Morris SE, Moody SA , Nemes P ., Analyst. June 21, 2016; 141 (12): 3648-56.
Neural transcription factors bias cleavage stage blastomeres to give rise to neural ectoderm. , Gaur S, Mandelbaum M, Herold M, Majumdar HD, Neilson KM , Maynard TM, Mood K, Daar IO , Moody SA ., Genesis. June 1, 2016; 54 (6): 334-49.
Single-Cell Mass Spectrometry for Discovery Proteomics: Quantifying Translational Cell Heterogeneity in the 16-Cell Frog (Xenopus) Embryo. , Lombard-Banek C, Moody SA , Nemes P ., Angew Chem Int Ed Engl. February 12, 2016; 55 (7): 2454-8.
Using Xenopus to discover new genes involved in branchiootorenal spectrum disorders. , Moody SA , Neilson KM , Kenyon KL , Alfandari D , Pignoni F., Comp Biochem Physiol C Toxicol Pharmacol. December 1, 2015; 178 16-24.
Single-cell mass spectrometry reveals small molecules that affect cell fates in the 16-cell embryo. , Onjiko RM, Moody SA , Nemes P ., Proc Natl Acad Sci U S A. May 26, 2015; 112 (21): 6545-50.
Early neural ectodermal genes are activated by Siamois and Twin during blastula stages. , Klein SL, Moody SA ., Genesis. May 1, 2015; 53 (5): 308-20.
Microarray identification of novel genes downstream of Six1, a critical factor in cranial placode, somite, and kidney development. , Yan B , Neilson KM , Ranganathan R, Maynard T, Streit A, Moody SA ., Dev Dyn. February 1, 2015; 244 (2): 181-210.
Subcellular metabolite and lipid analysis of Xenopus laevis eggs by LAESI mass spectrometry. , Shrestha B, Sripadi P, Reschke BR, Henderson HD, Powell MJ, Moody SA , Vertes A., PLoS One. December 15, 2014; 9 (12): e115173.
Neural transcription factors: from embryos to neural stem cells. , Lee HK , Lee HS , Moody SA ., Mol Cells. October 31, 2014; 37 (10): 705-12.
Establishing the pre-placodal region and breaking it into placodes with distinct identities. , Saint-Jeannet JP , Moody SA ., Dev Biol. May 1, 2014; 389 (1): 13-27.
Novel animal pole-enriched maternal mRNAs are preferentially expressed in neural ectoderm. , Grant PA , Yan B , Johnson MA, Johnson DL, Moody SA ., Dev Dyn. March 1, 2014; 243 (3): 478-96.
Dysphagia and disrupted cranial nerve development in a mouse model of DiGeorge (22q11) deletion syndrome. , Karpinski BA, Maynard TM, Fralish MS, Nuwayhid S, Zohn IE, Moody SA , LaMantia AS., Dis Model Mech. February 1, 2014; 7 (2): 245-57.
On becoming neural: what the embryo can tell us about differentiating neural stem cells. , Moody SA , Klein SL, Karpinski BA, Maynard TM, Lamantia AS., Am J Stem Cells. June 30, 2013; 2 (2): 74-94.
Conserved structural domains in FoxD4L1, a neural forkhead box transcription factor, are required to repress or activate target genes. , Klein SL, Neilson KM , Orban J, Yaklichkin S , Hoffbauer J, Mood K, Daar IO , Moody SA ., PLoS One. April 4, 2013; 8 (4): e61845.
Blastomere explants to test for cell fate commitment during embryonic development. , Grant PA , Herold MB, Moody SA ., J Vis Exp. January 26, 2013; (71):
Specific domains of FoxD4/5 activate and repress neural transcription factor genes to control the progression of immature neural ectoderm to differentiating neural plate. , Neilson KM , Klein SL, Mhaske P, Mood K, Daar IO , Moody SA ., Dev Biol. May 15, 2012; 365 (2): 363-75.
Using 32-cell stage Xenopus embryos to probe PCP signaling. , Lee HS , Sokol SY , Moody SA , Daar IO ., Methods Mol Biol. January 1, 2012; 839 91-104.