???pagination.result.count???
A simple method defines 3D morphology and axon projections of filled neurons in a small CNS volume: Steps toward understanding functional network circuitry. , Conte D, Borisyuk R, Hull M, Roberts A ., J Neurosci Methods. March 1, 2021; 351 109062.
The decision to move: response times, neuronal circuits and sensory memory in a simple vertebrate. , Roberts A , Borisyuk R, Buhl E, Ferrario A, Koutsikou S, Li WC , Soffe SR ., Proc Biol Sci. March 27, 2019; 286 (1899): 20190297.
A simple decision to move in response to touch reveals basic sensory memory and mechanisms for variable response times. , Koutsikou S, Merrison-Hort R, Buhl E, Ferrario A, Li WC , Borisyuk R, Soffe SR , Roberts A ., J Physiol. December 1, 2018; 596 (24): 6219-6233.
Zebrafish transgenic constructs label specific neurons in Xenopus laevis spinal cord and identify frog V0v spinal neurons. , Juárez-Morales JL, Martinez-De Luna RI , Zuber ME , Roberts A , Lewis KE ., Dev Neurobiol. September 1, 2017; 77 (8): 1007-1020.
Modelling Feedback Excitation, Pacemaker Properties and Sensory Switching of Electrically Coupled Brainstem Neurons Controlling Rhythmic Activity. , Hull MJ, Soffe SR , Willshaw DJ, Roberts A ., PLoS Comput Biol. January 29, 2016; 12 (1): e1004702.
Sensory initiation of a co-ordinated motor response: synaptic excitation underlying simple decision-making. , Buhl E, Soffe SR , Roberts A ., J Physiol. October 1, 2015; 593 (19): 4423-37.
Modelling the Effects of Electrical Coupling between Unmyelinated Axons of Brainstem Neurons Controlling Rhythmic Activity. , Hull MJ, Soffe SR , Willshaw DJ, Roberts A ., PLoS Comput Biol. May 8, 2015; 11 (5): e1004240.
A developmental approach to predicting neuronal connectivity from small biological datasets: a gradient-based neuron growth model. , Borisyuk R, Al Azad AK, Conte D, Roberts A , Soffe SR ., PLoS One. February 3, 2014; 9 (2): e89461.
Can simple rules control development of a pioneer vertebrate neuronal network generating behavior? , Roberts A , Conte D, Hull M, Merrison-Hort R, al Azad AK, Buhl E, Borisyuk R, Soffe SR ., J Neurosci. January 8, 2014; 34 (2): 608-21.
The firing patterns of spinal neurons: in situ patch-clamp recordings reveal a key role for potassium currents. , Winlove CI, Roberts A ., Eur J Neurosci. October 1, 2012; 36 (7): 2926-40.
The role of a trigeminal sensory nucleus in the initiation of locomotion. , Buhl E, Roberts A , Soffe SR ., J Physiol. May 15, 2012; 590 (10): 2453-69.
A functional scaffold of CNS neurons for the vertebrates: the developing Xenopus laevis spinal cord. , Roberts A , Li WC , Soffe SR ., Dev Neurobiol. April 1, 2012; 72 (4): 575-84.
Modeling the connectome of a simple spinal cord. , Borisyuk R, Al Azad AK, Conte D, Roberts A , Soffe SR ., Front Neuroinform. September 23, 2011; 5 20.
Pharmacology of currents underlying the different firing patterns of spinal sensory neurons and interneurons identified in vivo using multivariate analysis. , Winlove CI, Roberts A ., J Neurophysiol. May 1, 2011; 105 (5): 2487-500.
Specific brainstem neurons switch each other into pacemaker mode to drive movement by activating NMDA receptors. , Li WC , Roberts A , Soffe SR ., J Neurosci. December 8, 2010; 30 (49): 16609-20.
How neurons generate behavior in a hatchling amphibian tadpole: an outline. , Roberts A , Li WC , Soffe SR ., Front Behav Neurosci. June 28, 2010; 4 16.
Roles for multifunctional and specialized spinal interneurons during motor pattern generation in tadpoles, zebrafish larvae, and turtles. , Berkowitz A, Roberts A , Soffe SR ., Front Behav Neurosci. June 28, 2010; 4 36.
Defining the excitatory neurons that drive the locomotor rhythm in a simple vertebrate: insights into the origin of reticulospinal control. , Soffe SR , Roberts A , Li WC ., J Physiol. October 15, 2009; 587 (Pt 20): 4829-44.
Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles. , Li WC , Roberts A , Soffe SR ., J Physiol. April 15, 2009; 587 (Pt 8): 1677-93.
Responses of hatchling Xenopus tadpoles to water currents: first function of lateral line receptors without cupulae. , Roberts A , Feetham B, Pajak M, Teare T., J Exp Biol. April 1, 2009; 212 (Pt 7): 914-21.
Origin of excitatory drive to a spinal locomotor network. , Roberts A , Li WC , Soffe SR , Wolf E., Brain Res Rev. January 1, 2008; 57 (1): 22-8.
Stochasticity and functionality of neural systems: mathematical modelling of axon growth in the spinal cord of tadpole. , Borisyuk R, Cooke T, Roberts A ., Biosystems. January 1, 2008; 93 (1-2): 101-14.
Reconfiguration of a vertebrate motor network: specific neuron recruitment and context-dependent synaptic plasticity. , Li WC , Sautois B, Roberts A , Soffe SR ., J Neurosci. November 7, 2007; 27 (45): 12267-76.
Axon and dendrite geography predict the specificity of synaptic connections in a functioning spinal cord network. , Li WC , Cooke T, Sautois B, Soffe SR , Borisyuk R, Roberts A ., Neural Dev. September 10, 2007; 2 17.
Persistent responses to brief stimuli: feedback excitation among brainstem neurons. , Li WC , Soffe SR , Wolf E, Roberts A ., J Neurosci. April 12, 2006; 26 (15): 4026-35.
Glutamate and acetylcholine corelease at developing synapses. , Li WC , Soffe SR , Roberts A ., Proc Natl Acad Sci U S A. October 26, 2004; 101 (43): 15488-93.
Dorsal spinal interneurons forming a primitive, cutaneous sensory pathway. , Li WC , Soffe SR , Roberts A ., J Neurophysiol. August 1, 2004; 92 (2): 895-904.
A direct comparison of whole cell patch and sharp electrodes by simultaneous recording from single spinal neurons in frog tadpoles. , Li WC , Soffe SR , Roberts A ., J Neurophysiol. July 1, 2004; 92 (1): 380-6.
Primitive roles for inhibitory interneurons in developing frog spinal cord. , Li WC , Higashijima S, Parry DM, Roberts A , Soffe SR ., J Neurosci. June 23, 2004; 24 (25): 5840-8.
Brainstem control of activity and responsiveness in resting frog tadpoles: tonic inhibition. , Lambert TD, Li WC , Soffe SR , Roberts A ., J Comp Physiol A Neuroethol Sens Neural Behav Physiol. April 1, 2004; 190 (4): 331-42.
Mechanisms and significance of reduced activity and responsiveness in resting frog tadpoles. , Lambert TD, Howard J, Plant A, Soffe S, Roberts A ., J Exp Biol. March 1, 2004; 207 (Pt 7): 1113-25.
The spinal interneurons and properties of glutamatergic synapses in a primitive vertebrate cutaneous flexion reflex. , Li WC , Soffe SR , Roberts A ., J Neurosci. October 8, 2003; 23 (27): 9068-77.
The neuronal targets for GABAergic reticulospinal inhibition that stops swimming in hatchling frog tadpoles. , Li WC , Perrins R, Walford A, Roberts A ., J Comp Physiol A Neuroethol Sens Neural Behav Physiol. January 1, 2003; 189 (1): 29-37.
Spinal inhibitory neurons that modulate cutaneous sensory pathways during locomotion in a simple vertebrate. , Li WC , Soffe SR , Roberts A ., J Neurosci. December 15, 2002; 22 (24): 10924-34.
Sensory activation and role of inhibitory reticulospinal neurons that stop swimming in hatchling frog tadpoles. , Perrins R, Walford A, Roberts A ., J Neurosci. May 15, 2002; 22 (10): 4229-40.
Modelling inter-segmental coordination of neuronal oscillators: synaptic mechanisms for uni-directional coupling during swimming in Xenopus tadpoles. , Tunstall MJ, Roberts A , Soffe SR ., J Comput Neurosci. January 1, 2002; 13 (2): 143-58.
Meeting report: signaling schemes for TGF-beta. , Roberts AB , Derynck R., Sci STKE. December 18, 2001; 2001 (113): pe43.
Defining classes of spinal interneuron and their axonal projections in hatchling Xenopus laevis tadpoles. , Li WC , Perrins R, Soffe SR , Yoshida M, Walford A, Roberts A ., J Comp Neurol. December 17, 2001; 441 (3): 248-65.
Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles. , Soffe SR , Zhao FY, Roberts A ., Eur J Neurosci. February 1, 2001; 13 (3): 617-27.
Early functional organization of spinal neurons in developing lower vertebrates. , Roberts A ., Brain Res Bull. November 15, 2000; 53 (5): 585-93.
Zebrafish nma is involved in TGFbeta family signaling. , Tsang M , Kim R, de Caestecker MP, Kudoh T, Roberts AB , Dawid IB ., Genesis. October 1, 2000; 28 (2): 47-57.
A novel smad nuclear interacting protein, SNIP1, suppresses p300-dependent TGF-beta signal transduction. , Kim RH, Wang D, Tsang M , Martin J, Huff C, de Caestecker MP, Parks WT, Meng X, Lechleider RJ, Wang T, Roberts AB ., Genes Dev. July 1, 2000; 14 (13): 1605-16.
Simple mechanisms organise orientation of escape swimming in embryos and hatchling tadpoles of Xenopus laevis. , Roberts A , Hill NA, Hicks R., J Exp Biol. June 1, 2000; 203 (Pt 12): 1869-85.
Responses of young Xenopus laevis tadpoles to light dimming: possible roles for the pineal eye. , Jamieson D, Roberts A ., J Exp Biol. June 1, 2000; 203 (Pt 12): 1857-67.
A possible pathway connecting the photosensitive pineal eye to the swimming central pattern generator in young Xenopus laevis tadpoles. , Jamieson D, Roberts A ., Brain Behav Evol. December 1, 1999; 54 (6): 323-37.
Motoneurons of the axial swimming muscles in hatchling Xenopus tadpoles: features, distribution, and central synapses. , Roberts A , Walford A, Soffe SR , Yoshida M., J Comp Neurol. August 30, 1999; 411 (3): 472-86.
Functional analysis of human Smad1: role of the amino-terminal domain. , Xu RH, Lechleider RJ, Shih HM, Hao CF, Sredni D, Roberts AB , Kung H., Biochem Biophys Res Commun. May 10, 1999; 258 (2): 366-73.
Assessing the roles of glutamatergic and cholinergic synaptic drive in the control of fictive swimming frequency in young Xenopus tadpoles. , Zhao FY, Roberts A ., J Comp Physiol A. December 1, 1998; 183 (6): 753-8.
Central circuits controlling locomotion in young frog tadpoles. , Roberts A , Soffe SR , Wolf ES, Yoshida M, Zhao FY., Ann N Y Acad Sci. November 16, 1998; 860 19-34.
Axon projections of reciprocal inhibitory interneurons in the spinal cord of young Xenopus tadpoles and implications for the pattern of inhibition during swimming and struggling. , Yoshida M, Roberts A , Soffe SR ., J Comp Neurol. November 2, 1998; 400 (4): 504-18.