???pagination.result.count???
???pagination.result.page???
1
Mechanical characterization of Xenopus laevis oocytes using atomic force microscopy. , Kardashina T, Serrano EE , Dawson JA, Drach B., J Mech Behav Biomed Mater. September 1, 2024; 157 106648.
RNA Extraction from Xenopus Auditory and Vestibular Organs for Molecular Cloning and Expression Profiling with RNA-Seq and Microarrays. , Trujillo-Provencio C, Powers TR , Sultemeier DR, Ramirez-Gordillo D, Serrano EE ., Methods Mol Biol. January 1, 2016; 1427 73-92.
RNA-Seq and microarray analysis of the Xenopus inner ear transcriptome discloses orthologous OMIM(®) genes for hereditary disorders of hearing and balance. , Ramírez-Gordillo D, Powers TR , van Velkinburgh JC, Trujillo-Provencio C, Schilkey F, Serrano EE ., BMC Res Notes. November 18, 2015; 8 691.
Probing the Xenopus laevis inner ear transcriptome for biological function. , Powers TR , Virk SM , Trujillo-Provencio C, Serrano EE ., BMC Genomics. June 8, 2012; 13 225.
Optimization of gene delivery methods in Xenopus laevis kidney (A6) and Chinese hamster ovary (CHO) cell lines for heterologous expression of Xenopus inner ear genes. , Ramirez-Gordillo D, Trujillo-Provencio C, Knight VB, Serrano EE ., In Vitro Cell Dev Biol Anim. October 1, 2011; 47 (9): 640-52.
Imaging heterostructured quantum dots in cultured cells with epifluorescence and transmission electron microscopy. , Rivera EM, Provencio CT, Steinbruck A, Rastogi P, Dennis A, Hollingsworth J, Serrano EE ., Proc SPIE Int Soc Opt Eng. February 10, 2011; 7909 79090N.
Strategies for enhanced annotation of a microarray probe set. , Powers TR , Virk SM , Serrano EE ., Int J Bioinform Res Appl. January 1, 2010; 6 (2): 163-78.
RNA isolation from Xenopus inner ear sensory endorgans for transcriptional profiling and molecular cloning. , Trujillo-Provencio C, Powers TR , Sultemeier DR, Serrano EE ., Methods Mol Biol. January 1, 2009; 493 3-20.
Cell proliferation during the early compartmentalization of the Xenopus laevis inner ear. , Quick QA , Serrano EE ., Int J Dev Biol. January 1, 2007; 51 (3): 201-9.
Tissue and species differences in the application of quantum dots as probes for biomolecular targets in the inner ear and kidney. , Knight VB, Serrano EE ., IEEE Trans Nanobioscience. December 1, 2006; 5 (4): 251-62.
Inner ear formation during the early larval development of Xenopus laevis. , Quick QA , Serrano EE ., Dev Dyn. November 1, 2005; 234 (3): 791-801.
Identification of genes expressed in the Xenopus inner ear. , Serrano EE , Trujillo-Provencio C, Sultemeier DR, Bullock WM, Quick QA ., Cell Mol Biol (Noisy-le-grand). November 1, 2001; 47 (7): 1229-39.
Detection of transcripts for delayed rectifier potassium channels in the Xenopus laevis inner ear. , Varela-Ramírez A, Trujillo-Provencio C, Serrano EE ., Hear Res. May 1, 1998; 119 (1-2): 125-34.
Development of the Xenopus laevis VIIIth cranial nerve: increase in number and area of axons of the saccular and papillar branches. , López-Anaya VL, López-Maldonado D, Serrano EE ., J Morphol. December 1, 1997; 234 (3): 263-76.
Quantity, bundle types, and distribution of hair cells in the sacculus of Xenopus laevis during development. , Díaz ME, Varela-Ramírez A, Serrano EE ., Hear Res. November 1, 1995; 91 (1-2): 33-42.
Diversity of the transient outward potassium current in somata of identified molluscan neurons. , Serrano EE , Getting PA., J Neurosci. November 1, 1989; 9 (11): 4021-32.