Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.

Profile Publications (27)
XB-PERS-724

Publications By André W. Brändli

???pagination.result.count???

???pagination.result.page??? 1


Screening of Chemical Libraries Using Xenopus Embryos and Tadpoles for Phenotypic Drug Discovery., Gull M, Schmitt SM, Kälin RE, Brändli AW., Cold Spring Harb Protoc. April 3, 2023; 2023 (4): 098269-pdb.prot.


Chemical Screening and Toxicity Testing., Brändli AW., Cold Spring Harb Protoc. April 3, 2023; 2023 (4): 098251-pdb.top.


Functional characterization of two 20β-hydroxysteroid dehydrogenase type 2 homeologs from Xenopus laevis reveals multispecificity., Tokarz J, Schmitt SM, Möller G, Brändli AW, Adamski J., J Steroid Biochem Mol Biol. June 1, 2021; 210 105874.


Engineering Xenopus embryos for phenotypic drug discovery screening., Schmitt SM, Gull M, Brändli AW., Adv Drug Deliv Rev. April 1, 2014; 69-70 225-46.


Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy., Dietzel S, Pircher J, Nekolla AK, Gull M, Brändli AW, Pohl U, Rehberg M., PLoS One. January 1, 2014; 9 (6): e99615.   


Heat-shock mediated overexpression of HNF1β mutations has differential effects on gene expression in the Xenopus pronephric kidney., Sauert K, Kahnert S, Roose M, Gull M, Brändli AW, Ryffel GU, Waldner C., PLoS One. January 1, 2012; 7 (3): e33522.   


A role for all-trans-retinoic acid in the early steps of lymphatic vasculature development., Marino D, Dabouras V, Brändli AW, Detmar M., J Vasc Res. January 1, 2011; 48 (3): 236-51.


miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo., Pedrioli DM, Karpanen T, Dabouras V, Jurisic G, van de Hoek G, Shin JW, Marino D, Kälin RE, Leidel S, Cinelli P, Schulte-Merker S, Brändli AW, Detmar M., Mol Cell Biol. July 1, 2010; 30 (14): 3620-34.


The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos., Steinberg F, Zhuang L, Beyeler M, Kälin RE, Mullis PE, Brändli AW, Trueb B., J Biol Chem. January 15, 2010; 285 (3): 2193-202.   


An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis., Kälin RE, Bänziger-Tobler NE, Detmar M, Brändli AW., Blood. July 30, 2009; 114 (5): 1110-22.


Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus., Wheeler GN, Brändli AW., Dev Dyn. June 1, 2009; 238 (6): 1287-308.   


Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney., Christensen EI, Raciti D, Reggiani L, Verroust PJ, Brändli AW., Pflugers Arch. September 1, 2008; 456 (6): 1163-76.


Organization of the pronephric kidney revealed by large-scale gene expression mapping., Raciti D, Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brändli AW., Genome Biol. January 1, 2008; 9 (5): R84.   


The prepattern transcription factor Irx3 directs nephron segment identity., Reggiani L, Raciti D, Airik R, Kispert A, Brändli AW., Genes Dev. September 15, 2007; 21 (18): 2358-70.   


Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis., Kälin RE, Kretz MP, Meyer AM, Kispert A, Heppner FL, Brändli AW., Dev Biol. May 15, 2007; 305 (2): 599-614.   


A genetic Xenopus laevis tadpole model to study lymphangiogenesis., Ny A, Koch M, Schneider M, Neven E, Tong RT, Maity S, Fischer C, Plaisance S, Lambrechts D, Héligon C, Terclavers S, Ciesiolka M, Kälin R, Man WY, Senn I, Wyns S, Lupu F, Brändli A, Vleminckx K, Collen D, Dewerchin M, Conway EM, Moons L, Jain RK, Carmeliet P., Nat Med. September 1, 2005; 11 (9): 998-1004.


Noncanonical Wnt-4 signaling and EAF2 are required for eye development in Xenopus laevis., Maurus D, Héligon C, Bürger-Schwärzler A, Brändli AW, Kühl M., EMBO J. March 23, 2005; 24 (6): 1181-91.


Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney., Saulnier DM, Ghanbari H, Brändli AW., Dev Biol. August 1, 2002; 248 (1): 13-28.   


Embryonic expression of Xenopus SGLT-1L, a novel member of the solute carrier family 5 (SLC5), is confined to tubules of the pronephric kidney., Eid SR, Terrettaz A, Nagata K, Brändli AW., Int J Dev Biol. January 1, 2002; 46 (1): 177-84.   


Xenopus Na,K-ATPase: primary sequence of the beta2 subunit and in situ localization of alpha1, beta1, and gamma expression during pronephric kidney development., Eid SR, Brändli AW., Differentiation. September 1, 2001; 68 (2-3): 115-25.   


Molecular cloning and embryonic expression of Xenopus Six homeobox genes., Ghanbari H, Seo HC, Fjose A, Brändli AW., Mech Dev. March 1, 2001; 101 (1-2): 271-7.   


The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis., Helbling PM, Saulnier DM, Brändli AW., Development. January 1, 2000; 127 (2): 269-78.   


Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin-B ligands., Helbling PM, Saulnier DM, Robinson V, Christiansen JH, Wilkinson DG, Brändli AW., Dev Dyn. December 1, 1999; 216 (4-5): 361-73.   


Towards a molecular anatomy of the Xenopus pronephric kidney., Brändli AW., Int J Dev Biol. January 1, 1999; 43 (5): 381-95.   


Requirement for EphA receptor signaling in the segregation of Xenopus third and fourth arch neural crest cells., Helbling PM, Tran CT, Brändli AW., Mech Dev. November 1, 1998; 78 (1-2): 63-79.


Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development., Heller N, Brändli AW., Mech Dev. December 1, 1997; 69 (1-2): 83-104.   


Molecular cloning of tyrosine kinases in the early Xenopus embryo: identification of Eck-related genes expressed in cranial neural crest cells of the second (hyoid) arch., Brändli AW, Kirschner MW., Dev Dyn. June 1, 1995; 203 (2): 119-40.   

???pagination.result.page??? 1