???pagination.result.count???
???pagination.result.page???
1
Screening of Chemical Libraries Using Xenopus Embryos and Tadpoles for Phenotypic Drug Discovery. , Gull M, Schmitt SM, Kälin RE, Brändli AW ., Cold Spring Harb Protoc. April 3, 2023; 2023 (4): 098269-pdb.prot.
Chemical Screening and Toxicity Testing. , Brändli AW ., Cold Spring Harb Protoc. April 3, 2023; 2023 (4): 098251-pdb.top.
Functional characterization of two 20β-hydroxysteroid dehydrogenase type 2 homeologs from Xenopus laevis reveals multispecificity. , Tokarz J, Schmitt SM, Möller G, Brändli AW , Adamski J., J Steroid Biochem Mol Biol. June 1, 2021; 210 105874.
Engineering Xenopus embryos for phenotypic drug discovery screening. , Schmitt SM, Gull M, Brändli AW ., Adv Drug Deliv Rev. April 1, 2014; 69-70 225-46.
Label-free determination of hemodynamic parameters in the microcirculaton with third harmonic generation microscopy. , Dietzel S, Pircher J, Nekolla AK, Gull M, Brändli AW , Pohl U, Rehberg M., PLoS One. January 1, 2014; 9 (6): e99615.
Heat-shock mediated overexpression of HNF1β mutations has differential effects on gene expression in the Xenopus pronephric kidney. , Sauert K, Kahnert S, Roose M, Gull M, Brändli AW , Ryffel GU , Waldner C ., PLoS One. January 1, 2012; 7 (3): e33522.
A role for all-trans-retinoic acid in the early steps of lymphatic vasculature development. , Marino D, Dabouras V, Brändli AW , Detmar M., J Vasc Res. January 1, 2011; 48 (3): 236-51.
miR-31 functions as a negative regulator of lymphatic vascular lineage-specific differentiation in vitro and vascular development in vivo. , Pedrioli DM, Karpanen T, Dabouras V, Jurisic G, van de Hoek G, Shin JW, Marino D, Kälin RE, Leidel S, Cinelli P, Schulte-Merker S, Brändli AW , Detmar M., Mol Cell Biol. July 1, 2010; 30 (14): 3620-34.
The FGFRL1 receptor is shed from cell membranes, binds fibroblast growth factors (FGFs), and antagonizes FGF signaling in Xenopus embryos. , Steinberg F, Zhuang L, Beyeler M, Kälin RE, Mullis PE, Brändli AW , Trueb B., J Biol Chem. January 15, 2010; 285 (3): 2193-202.
An in vivo chemical library screen in Xenopus tadpoles reveals novel pathways involved in angiogenesis and lymphangiogenesis. , Kälin RE, Bänziger-Tobler NE, Detmar M, Brändli AW ., Blood. July 30, 2009; 114 (5): 1110-22.
Simple vertebrate models for chemical genetics and drug discovery screens: lessons from zebrafish and Xenopus. , Wheeler GN , Brändli AW ., Dev Dyn. June 1, 2009; 238 (6): 1287-308.
Gene expression analysis defines the proximal tubule as the compartment for endocytic receptor-mediated uptake in the Xenopus pronephric kidney. , Christensen EI, Raciti D , Reggiani L, Verroust PJ, Brändli AW ., Pflugers Arch. September 1, 2008; 456 (6): 1163-76.
Organization of the pronephric kidney revealed by large-scale gene expression mapping. , Raciti D , Reggiani L, Geffers L, Jiang Q, Bacchion F, Subrizi AE, Clements D, Tindal C, Davidson DR, Kaissling B, Brändli AW ., Genome Biol. January 1, 2008; 9 (5): R84.
The prepattern transcription factor Irx3 directs nephron segment identity. , Reggiani L, Raciti D , Airik R, Kispert A, Brändli AW ., Genes Dev. September 15, 2007; 21 (18): 2358-70.
Paracrine and autocrine mechanisms of apelin signaling govern embryonic and tumor angiogenesis. , Kälin RE, Kretz MP, Meyer AM, Kispert A, Heppner FL, Brändli AW ., Dev Biol. May 15, 2007; 305 (2): 599-614.
A genetic Xenopus laevis tadpole model to study lymphangiogenesis. , Ny A, Koch M, Schneider M, Neven E, Tong RT, Maity S, Fischer C, Plaisance S , Lambrechts D, Héligon C, Terclavers S, Ciesiolka M, Kälin R, Man WY, Senn I, Wyns S, Lupu F, Brändli A , Vleminckx K , Collen D, Dewerchin M , Conway EM, Moons L, Jain RK, Carmeliet P ., Nat Med. September 1, 2005; 11 (9): 998-1004.
Noncanonical Wnt-4 signaling and EAF2 are required for eye development in Xenopus laevis. , Maurus D, Héligon C, Bürger-Schwärzler A, Brändli AW , Kühl M ., EMBO J. March 23, 2005; 24 (6): 1181-91.
Essential function of Wnt-4 for tubulogenesis in the Xenopus pronephric kidney. , Saulnier DM, Ghanbari H, Brändli AW ., Dev Biol. August 1, 2002; 248 (1): 13-28.
Embryonic expression of Xenopus SGLT-1L, a novel member of the solute carrier family 5 (SLC5), is confined to tubules of the pronephric kidney. , Eid SR, Terrettaz A, Nagata K, Brändli AW ., Int J Dev Biol. January 1, 2002; 46 (1): 177-84.
Xenopus Na, K-ATPase: primary sequence of the beta2 subunit and in situ localization of alpha1, beta1, and gamma expression during pronephric kidney development. , Eid SR, Brändli AW ., Differentiation. September 1, 2001; 68 (2-3): 115-25.
Molecular cloning and embryonic expression of Xenopus Six homeobox genes. , Ghanbari H, Seo HC, Fjose A, Brändli AW ., Mech Dev. March 1, 2001; 101 (1-2): 271-7.
The receptor tyrosine kinase EphB4 and ephrin-B ligands restrict angiogenic growth of embryonic veins in Xenopus laevis. , Helbling PM, Saulnier DM, Brändli AW ., Development. January 1, 2000; 127 (2): 269-78.
Comparative analysis of embryonic gene expression defines potential interaction sites for Xenopus EphB4 receptors with ephrin-B ligands. , Helbling PM, Saulnier DM, Robinson V, Christiansen JH, Wilkinson DG , Brändli AW ., Dev Dyn. December 1, 1999; 216 (4-5): 361-73.
Towards a molecular anatomy of the Xenopus pronephric kidney. , Brändli AW ., Int J Dev Biol. January 1, 1999; 43 (5): 381-95.
Requirement for EphA receptor signaling in the segregation of Xenopus third and fourth arch neural crest cells. , Helbling PM, Tran CT, Brändli AW ., Mech Dev. November 1, 1998; 78 (1-2): 63-79.
Xenopus Pax-2 displays multiple splice forms during embryogenesis and pronephric kidney development. , Heller N, Brändli AW ., Mech Dev. December 1, 1997; 69 (1-2): 83-104.
Molecular cloning of tyrosine kinases in the early Xenopus embryo: identification of Eck-related genes expressed in cranial neural crest cells of the second (hyoid) arch. , Brändli AW , Kirschner MW ., Dev Dyn. June 1, 1995; 203 (2): 119-40.