???pagination.result.count???
???pagination.result.page???
1
Extended Synaptotagmin Interaction with the Fibroblast Growth Factor Receptor Depends on Receptor Conformation, Not Catalytic Activity. , Tremblay MG, Herdman C, Guillou F, Mishra PK, Baril J, Bellenfant S, Moss T ., J Biol Chem. June 26, 2015; 290 (26): 16142-56.
Loss of Extended Synaptotagmins ESyt2 and ESyt3 does not affect mouse development or viability, but in vitro cell migration and survival under stress are affected. , Herdman C, Tremblay MG, Mishra PK, Moss T ., Cell Cycle. January 1, 2014; 13 (16): 2616-25.
The endocytic adapter E- Syt2 recruits the p21 GTPase activated kinase PAK1 to mediate actin dynamics and FGF signalling. , Jean S, Tremblay MG, Herdman C, Guillou F, Moss T ., Biol Open. August 15, 2012; 1 (8): 731-8.
The p21-activated kinase Pak1 regulates induction and migration of the neural crest in Xenopus. , Bisson N, Wedlich D , Moss T ., Cell Cycle. April 1, 2012; 11 (7): 1316-24.
Manipulating the fragile X mental retardation proteins in the frog. , Huot ME, Bisson N, Moss T , Khandjian EW., Results Probl Cell Differ. January 1, 2012; 54 165-79.
Agonistic and antagonistic roles for TNIK and MINK in non-canonical and canonical Wnt signalling. , Mikryukov A, Moss T ., PLoS One. January 1, 2012; 7 (9): e43330.
Extended-synaptotagmin-2 mediates FGF receptor endocytosis and ERK activation in vivo. , Jean S, Mikryukov A, Tremblay MG, Baril J, Guillou F, Bellenfant S, Moss T ., Dev Cell. September 14, 2010; 19 (3): 426-39.
Role of p21-activated kinase in cell polarity and directional mesendoderm migration in the Xenopus gastrula. , Nagel M, Luu O, Bisson N, Macanovic B, Moss T , Winklbauer R ., Dev Dyn. July 1, 2009; 238 (7): 1709-26.
A ubiquitin-conjugating enzyme, ube2d3.2, regulates xMLK2 and pronephros formation in Xenopus. , Jean S, Moss T ., Differentiation. April 1, 2008; 76 (4): 431-41.
EphA4 signaling regulates blastomere adhesion in the Xenopus embryo by recruiting Pak1 to suppress Cdc42 function. , Bisson N, Poitras L, Mikryukov A, Tremblay M, Moss T ., Mol Biol Cell. March 1, 2007; 18 (3): 1030-43.
ERK modulates DNA bending and enhancesome structure by phosphorylating HMG1-boxes 1 and 2 of the RNA polymerase I transcription factor UBF. , Stefanovsky VY, Langlois F, Bazett-Jones D, Pelletier G, Moss T ., Biochemistry. March 21, 2006; 45 (11): 3626-34.
The RNA-binding protein fragile X-related 1 regulates somite formation in Xenopus laevis. , Huot ME, Bisson N, Davidovic L, Mazroui R, Labelle Y, Moss T , Khandjian EW., Mol Biol Cell. September 1, 2005; 16 (9): 4350-61.
The catalytic domain of xPAK1 is sufficient to induce myosin II dependent in vivo cell fragmentation independently of other apoptotic events. , Bisson N, Islam N , Poitras L, Jean S, Bresnick A, Moss T ., Dev Biol. November 15, 2003; 263 (2): 264-81.
PAK interacts with NCK and MLK2 to regulate the activation of jun N-terminal kinase. , Poitras L, Jean S, Islam N , Moss T ., FEBS Lett. May 22, 2003; 543 (1-3): 129-35.
A tissue restricted role for the Xenopus Jun N-terminal kinase kinase kinase MLK2 in cement gland and pronephric tubule differentiation. , Poitras L, Bisson N, Islam N , Moss T ., Dev Biol. February 15, 2003; 254 (2): 200-14.
DNA looping in the RNA polymerase I enhancesome is the result of non-cooperative in-phase bending by two UBF molecules. , Stefanovsky VY, Pelletier G, Bazett-Jones DP, Crane-Robinson C, Moss T ., Nucleic Acids Res. August 1, 2001; 29 (15): 3241-7.
Competitive recruitment of CBP and Rb- HDAC regulates UBF acetylation and ribosomal transcription. , Pelletier G, Stefanovsky VY, Faubladier M, Hirschler-Laszkiewicz I, Savard J, Rothblum LI, Côté J, Moss T ., Mol Cell. November 1, 2000; 6 (5): 1059-66.
The cytoskeletal effector xPAK1 is expressed during both ear and lateral line development in Xenopus. , Islam N , Poitras L, Moss T ., Int J Dev Biol. February 1, 2000; 44 (2): 245-8.
Cellular regulation of ribosomal DNA transcription:both rat and Xenopus UBF1 stimulate rDNA transcription in 3T3 fibroblasts. , Hannan R, Stefanovsky V, Arino T, Rothblum L, Moss T ., Nucleic Acids Res. February 15, 1999; 27 (4): 1205-13.
A ribosomal orphon sequence from Xenopus laevis flanked by novel low copy number repetitive elements. , Guimond A, Moss T ., Biol Chem. February 1, 1999; 380 (2): 167-74.
Enzymatic removal of vitelline membrane and other protocol modifications for whole mount in situ hybridization of Xenopus embryos. , Islam N , Moss T ., Trends Genet. November 1, 1996; 12 (11): 459.
Antisense and sense poly(A)-RNAs from the Xenopus laevis pyruvate dehydrogenase gene loci are regulated with message production during embryogenesis. , Islam N , Poitras L, Gagnon F, Moss T ., Gene. October 17, 1996; 176 (1-2): 9-16.
Catalytic and non-catalytic forms of the neurotrophin receptor xTrkB mRNA are expressed in a pseudo-segmental manner within the early Xenopus central nervous system. , Islam N , Gagnon F, Moss T ., Int J Dev Biol. October 1, 1996; 40 (5): 973-83.
The DNA supercoiling architecture induced by the transcription factor xUBF requires three of its five HMG-boxes. , Stefanovsky VY, Bazett-Jones DP, Pelletier G, Moss T ., Nucleic Acids Res. August 15, 1996; 24 (16): 3208-15.
An analysis of Xenopus tyrosine kinase genes and their expression in early development. , Islam N , Guimond A, Sanchez A , Moss T ., DNA Cell Biol. July 1, 1994; 13 (7): 719-29.
Short-range DNA looping by the Xenopus HMG-box transcription factor, xUBF. , Bazett-Jones DP, Leblanc B, Herfort M, Moss T ., Science. May 20, 1994; 264 (5162): 1134-7.
UV laser-induced protein-DNA crosslinking. , Dimitrov SI, Moss T ., Methods Mol Biol. January 1, 1994; 30 227-36.
DNase I footprinting. , Leblanc B, Moss T ., Methods Mol Biol. January 1, 1994; 30 1-10.
Mapping of a sequence essential for the nuclear transport of the Xenopus ribosomal transcription factor xUBF using a simple coupled translation-transport and acid extraction approach. , Dimitrov SI, Bachvarov D, Moss T ., DNA Cell Biol. April 1, 1993; 12 (3): 275-81.
Recognition of the Xenopus ribosomal core promoter by the transcription factor xUBF involves multiple HMG box domains and leads to an xUBF interdomain interaction. , Leblanc B, Read C, Moss T ., EMBO J. February 1, 1993; 12 (2): 513-25.
Variants of the Xenopus laevis ribosomal transcription factor xUBF are developmentally regulated by differential splicing. , Guimond A, Moss T ., Nucleic Acids Res. July 11, 1992; 20 (13): 3361-6.
High resolution studies of the Xenopus laevis ribosomal gene promoter in vivo and in vitro. , Read C, Larose AM, Leblanc B, Bannister AJ, Firek S, Smith DR, Moss T ., J Biol Chem. June 5, 1992; 267 (16): 10961-7.
Readthrough enhancement and promoter occlusion on the ribosomal genes of Xenopus laevis. , Moss T , Larose AM, Mitchelson K, Leblanc B., Biochem Cell Biol. May 1, 1992; 70 (5): 324-31.
Heterogeneity in the Xenopus ribosomal transcription factor xUBF has a molecular basis distinct from that in mammals. , Bachvarov D, Normandeau M, Moss T ., FEBS Lett. August 19, 1991; 288 (1-2): 55-9.
The RNA polymerase I transcription factor xUBF contains 5 tandemly repeated HMG homology boxes. , Bachvarov D, Moss T ., Nucleic Acids Res. May 11, 1991; 19 (9): 2331-5.
Point mutation analysis of the Xenopus laevis RNA polymerase I core promoter. , Firek S, Read C, Smith DR, Moss T ., Nucleic Acids Res. January 11, 1990; 18 (1): 105-9.
The Xenopus laevis ribosomal gene terminator contains sequences that both enhance and repress ribosomal transcription. , Firek S, Read C, Smith DR, Moss T ., Mol Cell Biol. September 1, 1989; 9 (9): 3777-84.
The enhancement of ribosomal transcription by the recycling of RNA polymerase I. , Mitchelson K, Moss T ., Nucleic Acids Res. November 25, 1987; 15 (22): 9577-96.
A complex array of sequences enhances ribosomal transcription in Xenopus laevis. , De Winter RF, Moss T ., J Mol Biol. August 20, 1987; 196 (4): 813-27.
The ribosomal spacer in Xenopus laevis is transcribed as part of the primary ribosomal RNA. , De Winter RF, Moss T ., Nucleic Acids Res. August 11, 1986; 14 (15): 6041-51.
Spacer promoters are essential for efficient enhancement of X. laevis ribosomal transcription. , De Winter RF, Moss T ., Cell. January 31, 1986; 44 (2): 313-8.
A transcriptional function for the repetitive ribosomal spacer in Xenopus laevis. , Moss T ., Nature. March 17, 1983; 302 (5905): 223-8.
Transcription of cloned Xenopus laevis ribosomal DNA microinjected into Xenopus oocytes, and the identification of an RNA polymerase I promoter. , Moss T ., Cell. October 1, 1982; 30 (3): 835-42.
More ribosomal spacer sequences from Xenopus laevis. , Moss T , Boseley PG, Birnstiel ML., Nucleic Acids Res. February 11, 1980; 8 (3): 467-85.
5''-Labeling and poly(dA) tailing. , Boseley PG, Moss T , Birnstiel ML., Methods Enzymol. January 1, 1980; 65 (1): 478-94.
The putative promoter of a Xenopus laevis ribosomal gene is reduplicated. , Moss T , Birnstiel ML., Nucleic Acids Res. August 24, 1979; 6 (12): 3733-43.
Sequence organization of the spacer DNA in a ribosomal gene unit of Xenopus laevis. , Boseley P, Moss T , Mächler M, Portmann R, Birnstiel M., Cell. May 1, 1979; 17 (1): 19-31.