Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-45079
EMBO J 2012 Mar 07;315:1109-22. doi: 10.1038/emboj.2011.487.
Show Gene links Show Anatomy links

A molecular mechanism that links Hippo signalling to the inhibition of Wnt/β-catenin signalling.

Imajo M , Miyatake K , Iimura A , Miyamoto A , Nishida E .


???displayArticle.abstract???
The Hippo signalling pathway has emerged as a key regulator of organ size, tissue homeostasis, and patterning. Recent studies have shown that two effectors in this pathway, YAP/TAZ, modulate Wnt/β-catenin signalling through their interaction with β-catenin or Dishevelled, depending on biological contexts. Here, we identify a novel mechanism through which Hippo signalling inhibits Wnt/β-catenin signalling. We show that YAP and TAZ, the transcriptional co-activators in the Hippo pathway, suppress Wnt signalling without suppressing the stability of β-catenin but through preventing its nuclear translocation. Our results show that YAP/TAZ binds to β-catenin, thereby suppressing Wnt-target gene expression, and that the Hippo pathway-stimulated phosphorylation of YAP, which induces cytoplasmic translocation of YAP, is required for the YAP-mediated inhibition of Wnt/β-catenin signalling. We also find that downregulation of Hippo signalling correlates with upregulation of β-catenin signalling in colorectal cancers. Remarkably, our analysis demonstrates that phosphorylated YAP suppresses nuclear translocation of β-catenin by directly binding to it in the cytoplasm. These results provide a novel mechanism, in which Hippo signalling antagonizes Wnt signalling by regulating nuclear translocation of β-catenin.

???displayArticle.pubmedLink??? 22234184
???displayArticle.pmcLink??? PMC3297994
???displayArticle.link??? EMBO J


Species referenced: Xenopus
Genes referenced: ctnnb1 dvl2 tafazzin wwtr1 yap1

References [+] :
Angers, The KLHL12-Cullin-3 ubiquitin ligase negatively regulates the Wnt-beta-catenin pathway by targeting Dishevelled for degradation. 2006, Pubmed, Xenbase