Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-14591
J Biol Chem 1998 Jul 24;27330:18923-9.
Show Gene links Show Anatomy links

Sodium and lithium interactions with the Na+/Dicarboxylate cotransporter.

Pajor AM , Hirayama BA , Loo DD .


???displayArticle.abstract???
The two-electrode voltage clamp was used to study the currents associated with transport of succinate by the cloned Na+/dicarboxylate cotransporter, NaDC-1, expressed in Xenopus oocytes. The presence of succinate induced inward currents which were dependent on the concentrations of succinate and sodium, and on the membrane potential. At -50 mV, the K0.5succinate was 180 microM and the K0.5Na+ was 19 mM. The Hill coefficient was 2.3, which is consistent with a transport stoichiometry of 3 Na+:1 divalent anion substrate. Currents were induced in NaDC-1 by a range of di- and tricarboxylates, including citrate, methylsuccinate, fumarate, and tricarballylate. Although Na+ is the preferred cation, Li+ was also able to support transport. The K0.5succinate was approximately 10-fold higher in Li+ compared with Na+. In the presence of Na+, however, Li+ was a potent inhibitor of transport. Millimolar concentrations of Li+ resulted in decreases in apparent succinate affinity and in the Imaxsuccinate. Furthermore, lithium inhibition under saturating sodium concentrations showed hyperbolic kinetics, suggesting that one of the three cation binding sites in NaDC-1 has a higher affinity for Li+ than Na+. We conclude that NaDC-1 is an electrogenic anion transporter that accepts either Na+ or Li+ as coupling cations. However, NaDC-1 contains a single high affinity binding site for Li+ that, when occupied, results in transport inhibition, which may account for its potent inhibitory effects on renal dicarboxylate transport.

???displayArticle.pubmedLink??? 9668069
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: slc13a2