Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-17489
Am J Physiol 1996 Nov 01;2715 Pt 1:C1539-45. doi: 10.1152/ajpcell.1996.271.5.C1539.
Show Gene links Show Anatomy links

Identification of a second region of the beta-subunit involved in regulation of calcium channel inactivation.

Qin N , Olcese R , Zhou J , Cabello OA , Birnbaumer L , Stefani E .


???displayArticle.abstract???
Previous studies have shown that NH2 termini of the type 1 and 2 beta-subunits modulate the rate at which the neuronal alpha 1E calcium channel inactivates in response to voltage and that they do so independently of their common effect to stimulate activation by voltage (R. Olcese, N. Qin, T. Schneider, A. Neely, X. Wei, E. Stefani, and L. Birnbaumer, Neuron 13: 1433-1438, 1994). By constructing NH2-terminal deletions of several splice variants of beta-subunits, we have now found differences in the way they affect the rate of alpha 1E inactivation that lead us to identify a second domain that also regulates the rate of voltage-induced inactivation of the Ca2+ channel. This second domain, named segment 3, lies between two regions of high-sequence identity between all known beta-subunits and exists in two lengths (long and short), each encoded in a separate exon. Beta-Subunits with the longer 45- to 53-amino acid version cause the channel to inactivate more slowly than subunits with the shorter 7-amino acid version. As is the case for the NH2 terminus, the segment 3 does not affect the regulation of channel activation by the beta-subunit. In addition, the effect of the NH2-terminal segment prevails over that of the internal segment. This raises the possibility that phosphorylation, other types of posttranslational modification, or interaction with other auxiliary calcium channel subunits may be necessary to unmask the regulatory effect of the internal segment.

???displayArticle.pubmedLink??? 8944637
???displayArticle.link??? Am J Physiol
???displayArticle.grants??? [+]