Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-25720
J Neurochem 1990 Aug 01;552:632-40. doi: 10.1111/j.1471-4159.1990.tb04180.x.
Show Gene links Show Anatomy links

Neurotoxins distinguish between different neuronal nicotinic acetylcholine receptor subunit combinations.

Luetje CW , Wada K , Rogers S , Abramson SN , Tsuji K , Heinemann S , Patrick J .


???displayArticle.abstract???
Neuronal and muscle nicotinic acetylcholine receptor subunit combinations expressed in Xenopus oocytes were tested for sensitivity to various neurotoxins. Extensive blockade of the alpha 3 beta 2 neuronal subunit combination was achieved by 10 nM neuronal bungarotoxin. Partial blockade of the alpha 4 beta 2 neuronal and alpha 1 beta 1 gamma delta muscle subunit combinations was caused by 1,000 nM neuronal bungarotoxin. The alpha 2 beta 2 neuronal subunit combination was insensitive to 1,000 nM neuronal bungarotoxin. Nearly complete blockade of all neuronal subunit combinations resulted from incubation with 2 nM neosurugatoxin, whereas 200 nM neosurugatoxin was required for partial blockade of the alpha 1 beta 1 gamma delta muscle subunit combination. The alpha 2 beta 2 and alpha 3 beta 2 neuronal subunit combinations were partially blocked by 10,000 nM lophotoxin analog-1, whereas complete blockade of the alpha 4 beta 2 neuronal and alpha 1 beta 1 gamma delta muscle subunit combinations resulted from incubation with this concentration of lophotoxin analog-1. The alpha 1 beta 1 gamma delta muscle subunit combination was blocked by the alpha-conotoxins G1A and M1 at concentrations of 100 nM. All of the neuronal subunit combinations were insensitive to 10,000 nM of both alpha-conotoxins. Thus, neosurugatoxin and the alpha-conotoxins distinguish between muscle and neuronal subunit combinations, whereas neuronal bungarotoxin and lophotoxin analog-1 distinguish between different neuronal subunit combinations on the basis of differing alpha subunits.

???displayArticle.pubmedLink??? 1973456
???displayArticle.link??? J Neurochem
???displayArticle.grants??? [+]