Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-34364
Proc Natl Acad Sci U S A 2006 Oct 17;10342:15434-9. doi: 10.1073/pnas.0606701103.
Show Gene links Show Anatomy links

Similarities between heterophilic and homophilic cadherin adhesion.

Prakasam AK , Maruthamuthu V , Leckband DE .


???displayArticle.abstract???
The mechanism that drives the segregation of cells into tissue-specific subpopulations during development is largely attributed to differences in intercellular adhesion. This process requires the cadherin family of calcium-dependent glycoproteins. A widely held view is that protein-level discrimination between different cadherins on cell surfaces drives this sorting process. Despite this postulated molecular selectivity, adhesion selectivity has not been quantitatively verified at the protein level. In this work, molecular force measurements and bead aggregation assays tested whether differences in cadherin bond strengths could account for cell sorting in vivo and in vitro. Studies were conducted with chicken N-cadherin, canine E-cadherin, and Xenopus C-cadherin. Both qualitative bead aggregation and quantitative force measurements show that the cadherins cross-react. Furthermore, heterophilic adhesion is not substantially weaker than homophilic adhesion, and the measured differences in adhesion do not correlate with cell sorting behavior. These results suggest that the basis for cell segregation during morphogenesis does not map exclusively to protein-level differences in cadherin adhesion.

???displayArticle.pubmedLink??? 17023539
???displayArticle.pmcLink??? PMC1622841
???displayArticle.link??? Proc Natl Acad Sci U S A
???displayArticle.grants??? [+]


References [+] :
Ahrens, Analysis of heterophilic and homophilic interactions of cadherins using the c-Jun/c-Fos dimerization domains. 2002, Pubmed