Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-20122
Neuron 1995 Feb 01;142:407-12. doi: 10.1016/0896-6273(95)90296-1.
Show Gene links Show Anatomy links

Persistent activation of min K channels by chemical cross-linking.

Varnum MD , Maylie J , Busch A , Adelman JP .


???displayArticle.abstract???
Expression of the structurally and functionally distinct min K channel in Xenopus oocytes results in voltage-dependent potassium currents that activate with a characteristic slow time course. Application of a membrane-impermeable chemical cross-linking agent to oocytes expressing min K decreased the time-dependent current, increased its rate of activation, and induced persistently activated inward and outward potassium currents. These effects required membrane depolarization, demonstrating use dependence. Persistently activated channels retained potassium selectivity and sensitivity to block by clofilium and barium. These results suggest that a major conformational change occurs during min K channel gating, which can be stabilized by chemical cross-linking, and are consistent with a model in which min K channels activate by voltage-dependent subunit aggregation.

???displayArticle.pubmedLink??? 7857648
???displayArticle.link??? Neuron