Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-19410
Biophys J 1995 Aug 01;692:428-34.
Show Gene links Show Anatomy links

Multiple residues specify external tetraethylammonium blockade in voltage-gated potassium channels.

Pascual JM , Shieh CC , Kirsch GE , Brown AM .


???displayArticle.abstract???
We have mapped residues in the carboxyl half of the P region of a voltage-gated K+ channel that influence external tetraethylammonium (TEA) block. Fifteen amino acids were substituted with cysteine and expressed in oocytes from monomeric or heterodimeric cRNAs. From a total of six mutant channels with altered TEA sensitivity, three were susceptible to modification by extracellularly applied charged methanethiosulfonates (MTSX). Another residue did not affect TEA block but was protected from MTSX by TEA. MTSX modification of position Y380C, thought to form the TEA binding site, affected TEA affinity only moderately, and this effect could be reversed by additional charge transfer from an oppositely charged MTSX analog. The results show that TEA block is modulated from multiple sites, including residues located deep in the pore and that several side chains besides that of Y380 are exposed at the TEA receptor.

???displayArticle.pubmedLink??? 8527656
???displayArticle.pmcLink??? PMC1236267
???displayArticle.link??? Biophys J
???displayArticle.grants??? [+]


References [+] :
Akabas, Acetylcholine receptor channel structure probed in cysteine-substitution mutants. 1992, Pubmed, Xenbase