Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-21736
Cell Calcium 1994 Jan 01;151:36-44. doi: 10.1016/0143-4160(94)90102-3.
Show Gene links Show Anatomy links

Spontaneous calcium oscillations in Xenopus laevis melanotrope cells are mediated by omega-conotoxin sensitive calcium channels.

Scheenen WJ , Jenks BG , Roubos EW , Willems PH .


???displayArticle.abstract???
The dynamics of intracellular Ca2+ signalling in single melanotrope cells of the pituitary gland of the amphibian Xenopus laevis have been studied by means of a digital imaging technique using the fluorescent dye Fura-2. When placed in vitro, the majority of the cells (77%) displayed spontaneous oscillatory changes in the free cytosolic Ca2+ concentration with a frequency of 1 +/- 0.25 (SD) min-1. The oscillations rapidly stopped when extracellular Ca2+ was reduced to nanomolar concentrations, revealing their complete dependence on Ca2+ influx. The fact that the Ca2+ oscillations were blocked by 1 microM omega-conotoxin, but not by nifedipine, at concentrations up to 50 microM, indicated that Ca2+ entered the cell via N-type rather than L-type voltage operated Ca2+ channels. Thapsigargin, a putative inhibitor of intracellular Ca(2+)-ATPase activity, elevated the baseline Ca2+ concentration but had no effect on the occurrence of the spontaneous oscillations. This suggests that intracellular Ca2+ pools are not involved in the mechanism underlying spontaneous Ca2+ oscillations. This is the first report showing spontaneous Ca2+ oscillations mediated by N-type Ca2+ channels in melanotrope cells.

???displayArticle.pubmedLink??? 8149404
???displayArticle.link??? Cell Calcium