Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-5800
J Physiol 2003 Feb 15;547Pt 1:159-68. doi: 10.1113/jphysiol.2002.031625.
Show Gene links Show Anatomy links

Analysis of the differential modulation of sulphonylurea block of beta-cell and cardiac ATP-sensitive K+ (K(ATP)) channels by Mg-nucleotides.

Reimann F , Dabrowski M , Jones P , Gribble FM , Ashcroft FM .


???displayArticle.abstract???
Sulphonylureas stimulate insulin secretion by binding with high-affinity to the sulphonylurea receptor (SUR) subunit of the ATP-sensitive potassium (K(ATP)) channel and thereby closing the channel pore (formed by four Kir6.2 subunits). In the absence of added nucleotides, the maximal block is around 60-80 %, indicating that sulphonylureas act as partial antagonists. Intracellular MgADP modulated sulphonylurea block, enhancing inhibition of Kir6.2/SUR1 (beta-cell type) and decreasing that of Kir6.2/SUR2A (cardiac-type) channels. We examined the molecular basis of the different response of channels containing SUR1 and SUR2A, by recording currents from inside-out patches excised from Xenopus oocytes heterologously expressing wild-type or chimeric channels. We used the benzamido derivative meglitinide as this drug blocks Kir6.2/SUR1 and Kir6.2/SUR2A currents, reversibly and with similar potency. Our results indicate that transfer of the region containing transmembrane helices (TMs) 8-11 and the following 65 residues of SUR1 into SUR2A largely confers a SUR1-like response to MgADP and meglitinide, whereas the reverse chimera (SUR128) largely endows SUR1 with a SUR2A-type response. This effect was not specific for meglitinide, as tolbutamide was also unable to prevent MgADP activation of Kir6.2/SUR128 currents. The data favour the idea that meglitinide binding to SUR1 impairs either MgADP binding or the transduction pathway between the NBDs and Kir6.2, and that TMs 8-11 are involved in this modulatory response. The results provide a basis for understanding how beta-cell K(ATP) channels show enhanced sulphonylurea inhibition under physiological conditions, whereas cardiac K(ATP) channels exhibit reduced block in intact cells, especially during metabolic inhibition.

???displayArticle.pubmedLink??? 12562963
???displayArticle.pmcLink??? PMC2342633
???displayArticle.link??? J Physiol


Species referenced: Xenopus laevis
Genes referenced: abcc8 abcc9 ins pycard

References [+] :
Aguilar-Bryan, Cloning of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion. 1995, Pubmed