Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-11467
Br J Pharmacol 2000 Feb 01;1294:627-30. doi: 10.1038/sj.bjp.0703111.
Show Gene links Show Anatomy links

The pharmacology of hSK1 Ca2+-activated K+ channels expressed in mammalian cell lines.

Shah M , Haylett DG .


???displayArticle.abstract???
The pharmacology of hSK1, a small conductance calcium-activated potassium channel, was studied in mammalian cell lines (HEK293 and COS-7). In these cell types, hSK1 forms an apamin-sensitive channel with an IC(50) for apamin of 8 nM in HEK293 cells and 12 nM in COS-7 cells. The currents in HEK293 cells were also sensitive to tubocurarine (IC(50)=23 microM), dequalinium (IC(50)=0.4 microM), and the novel dequalinium analogue, UCL1848 (IC(50)=1 nM). These results are very different from the pharmacology of hSK1 channels expressed in Xenopus oocytes and suggest the properties of the channel may depend on the expression system. Our findings also raise questions about the role of SK1 channels in generating the apamin-insensitive slow afterhyperpolarization observed in central neurones.

???displayArticle.pubmedLink??? 10683185
???displayArticle.pmcLink??? PMC1571896
???displayArticle.link??? Br J Pharmacol


Species referenced: Xenopus
Genes referenced: kcnn1 papss1

References [+] :
Castle, Dequalinium: a potent inhibitor of apamin-sensitive K+ channels in hepatocytes and of nicotinic responses in skeletal muscle. 1993, Pubmed