Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Proc Natl Acad Sci U S A
1995 Jul 18;9215:6758-62.
Show Gene links
Show Anatomy links
Inhibition of function in Xenopus oocytes of the inwardly rectifying G-protein-activated atrial K channel (GIRK1) by overexpression of a membrane-attached form of the C-terminal tail.
Dascal N
,
Doupnik CA
,
Ivanina T
,
Bausch S
,
Wang W
,
Lin C
,
Garvey J
,
Chavkin C
,
Lester HA
,
Davidson N
.
???displayArticle.abstract???
Coexpression in Xenopus oocytes of the inwardly rectifying guanine nucleotide binding (G)-protein-gated K channel GIRK1 with a myristoylated modification of the (putative) cytosolic C-terminal tail [GIRK1 aa 183-501 fused in-frame to aa 1-15 of p60src and denoted src+ (183-501)] leads to a high degree of inhibition of the inward G-protein-gated K+ current. The nonmyristoylated segment, src- (183-501), is not active. Although some interference with assembly is not precluded, the evidence indicates that the main mechanism of inhibition is interference with functional activation of the channel by G proteins. In part, the tail functions as a blocking particle similar to a "Shaker ball"; it may also function by competing for the available supply of free G beta gamma liberated by hormone activation of a seven-helix receptor. The non-G-protein-gated weak inward rectifier ROMK1 is less effectively inhibited, and a Shaker K channel was not inhibited. Immunological assays show the presence of a high concentration of src+ (183-501) in the plasma membrane and the absence of any membrane forms for the nonmyristoylated segment.
Babila,
Assembly of mammalian voltage-gated potassium channels: evidence for an important role of the first transmembrane segment.
1994, Pubmed,
Xenbase
Babila,
Assembly of mammalian voltage-gated potassium channels: evidence for an important role of the first transmembrane segment.
1994,
Pubmed
,
Xenbase
Dascal,
Atrial G protein-activated K+ channel: expression cloning and molecular properties.
1993,
Pubmed
,
Xenbase
Ho,
Cloning and expression of an inwardly rectifying ATP-regulated potassium channel.
1993,
Pubmed
,
Xenbase
Ivanina,
Phosphorylation by protein kinase A of RCK1 K+ channels expressed in Xenopus oocytes.
1994,
Pubmed
,
Xenbase
Kain,
Universal promoter for gene expression without cloning: expression-PCR.
1991,
Pubmed
Kubo,
Primary structure and functional expression of a rat G-protein-coupled muscarinic potassium channel.
1993,
Pubmed
,
Xenbase
Lesage,
Cloning provides evidence for a family of inward rectifier and G-protein coupled K+ channels in the brain.
1994,
Pubmed
,
Xenbase
Li,
Specification of subunit assembly by the hydrophilic amino-terminal domain of the Shaker potassium channel.
1992,
Pubmed
Lim,
A G protein-gated K channel is activated via beta 2-adrenergic receptors and G beta gamma subunits in Xenopus oocytes.
1995,
Pubmed
,
Xenbase
Mager,
Steady states, charge movements, and rates for a cloned GABA transporter expressed in Xenopus oocytes.
1993,
Pubmed
,
Xenbase
Pellman,
An N-terminal peptide from p60src can direct myristylation and plasma membrane localization when fused to heterologous proteins.
,
Pubmed
Reuveny,
Activation of the cloned muscarinic potassium channel by G protein beta gamma subunits.
1994,
Pubmed
,
Xenbase
Taglialatela,
Specification of pore properties by the carboxyl terminus of inwardly rectifying K+ channels.
1994,
Pubmed
,
Xenbase
Verrall,
The N-terminal domains of acetylcholine receptor subunits contain recognition signals for the initial steps of receptor assembly.
1992,
Pubmed
Wickman,
Recombinant G-protein beta gamma-subunits activate the muscarinic-gated atrial potassium channel.
1994,
Pubmed
Zagotta,
Restoration of inactivation in mutants of Shaker potassium channels by a peptide derived from ShB.
1990,
Pubmed
,
Xenbase