Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Mechanism of release of Ca2+ from intracellular stores in response to ionomycin in oocytes of the frog Xenopus laevis.
Yoshida S
,
Plant S
.
???displayArticle.abstract???
1. The mechanism of Ca2+ release from intracellular stores was studied in defolliculated Xenopus laevis oocytes by measuring whole-cell currents using the two-electrode voltage-clamp method. 2. The extracellular application of ionomycin, a selective Ca2+ ionophore, evoked an inward current consisting of a spike-like fast component followed by a long-lasting slow component with few superimposed current oscillations (fluctuations). The ionomycin response occurred in a dose-dependent manner and was dependent on Cl-. 3. No apparent refractory period was observed for repetitively evoked small ionomycin responses when the concentration of ionomycin was low (0.1 microM). In contrast, a larger ionomycin response (1 microM), consisting of fast and slow components, was followed by refractory period. Washing for 50-90 min was necessary for full recovery of the ionomycin response. 4. The response to ionomycin was suppressed by the extracellular application of acetoxymethyl ester of bis-(O-aminophenoxy)-ethane-N,N,N',N'-tetraacetic acid (BAPTA AM, 1-10 microM), a membrane-permeable intracellular Ca2+ chelator. 5. The ionomycin response was not affected by pertussis toxin (PTX, 0.3-2.0 microgram/ml), a blocker of guanine nucleotide-binding regulatory proteins (G proteins). In contrast, the response to acetylcholine (ACh), which is known to occur via a G protein, was suppressed by PTX. 6. The fast component was not affected by removing Ca2+ from the bathing medium or by replacing extracellular Ca2+ with Ba2+ or Mn2+ (all of these solutions were supplemented with 2 mM EGTA), whereas the slow component was suppressed. 7. Injection of inositol 1,4,5-trisphosphate (IP3) following a response to extra-cellularly applied ionomycin did not evoke an appreciable membrane current. In contrast, ionomycin evoked a small inward current when it was applied after an inward-current response evoked by IP3 injection, whereas a second injection of IP3 did not evoke any appreciable current. 8. The results indicate that (a) ionomycin releases Ca2+ from its intracellular stores without the involvement of G proteins, resulting in activation of Ca(2+)-activated Cl- channels, (b) ionomycin mainly acts on the same intracellular Ca2+ stores as IP3, and (c) entry of Ca2+ from outside the cell considerably contributes to the slow component of the ionomycin response, whereas its fast component is predominantly dependent on the release of Ca2+ from the intracellular stores.
Barritt,
Effects of electrical stimulation and an intracellular calcium chelator on calcium movement in suspensions of isolated myocardial muscle cells.
1985, Pubmed
Barritt,
Effects of electrical stimulation and an intracellular calcium chelator on calcium movement in suspensions of isolated myocardial muscle cells.
1985,
Pubmed
Berridge,
Inositol trisphosphate-induced membrane potential oscillations in Xenopus oocytes.
1988,
Pubmed
,
Xenbase
Berridge,
Spatial and temporal aspects of cell signalling.
1988,
Pubmed
,
Xenbase
Berridge,
Inositol phosphates and cell signalling.
1989,
Pubmed
Berridge,
Inositol trisphosphate and diacylglycerol: two interacting second messengers.
1987,
Pubmed
Biden,
Inositol 1,4,5-trisphosphate and intracellular Ca2+ homeostasis in clonal pituitary cells (GH3). Translocation of Ca2+ into mitochondria from a functionally discrete portion of the nonmitochondrial store.
1986,
Pubmed
Boton,
Two calcium-activated chloride conductances in Xenopus laevis oocytes permeabilized with the ionophore A23187.
1989,
Pubmed
,
Xenbase
Boynton,
Extracellular ATP mobilizes intracellular Ca2+ in T51B rat liver epithelial cells: a study involving single cell measurements.
1989,
Pubmed
Cohen-Armon,
Modulation of the voltage-dependent sodium channel by agents affecting G-proteins: a study in Xenopus oocytes injected with brain RNA.
1989,
Pubmed
,
Xenbase
Dascal,
Interaction between injected Ca2+ and intracellular Ca2+ stores in Xenopus oocytes.
1990,
Pubmed
,
Xenbase
Dascal,
Involvement of a GTP-binding protein in mediation of serotonin and acetylcholine responses in Xenopus oocytes injected with rat brain messenger RNA.
1986,
Pubmed
,
Xenbase
Dascal,
Role of calcium mobilization in mediation of acetylcholine-evoked chloride currents in Xenopus laevis oocytes.
1985,
Pubmed
,
Xenbase
Dascal,
The use of Xenopus oocytes for the study of ion channels.
1987,
Pubmed
,
Xenbase
Dumont,
Oogenesis in Xenopus laevis (Daudin). I. Stages of oocyte development in laboratory maintained animals.
1972,
Pubmed
,
Xenbase
Gillo,
The involvement of inositol 1,4,5-trisphosphate and calcium in the two-component response to acetylcholine in Xenopus oocytes.
1987,
Pubmed
,
Xenbase
Lechleiter,
Subcellular patterns of calcium release determined by G protein-specific residues of muscarinic receptors.
1991,
Pubmed
,
Xenbase
Lechleiter,
Spiral calcium wave propagation and annihilation in Xenopus laevis oocytes.
1991,
Pubmed
,
Xenbase
Liu,
Characterization of ionomycin as a calcium ionophore.
1978,
Pubmed
Nomura,
Inositol phosphate formation and chloride current responses induced by acetylcholine and serotonin through GTP-binding proteins in Xenopus oocyte after injection of rat brain messenger RNA.
1987,
Pubmed
,
Xenbase
Oron,
Inositol 1,4,5-trisphosphate mimics muscarinic response in Xenopus oocytes.
,
Pubmed
,
Xenbase
Parker,
Localized all-or-none calcium liberation by inositol trisphosphate.
1990,
Pubmed
,
Xenbase
Rana,
Role of phosphoinositides in transmembrane signaling.
1990,
Pubmed
Snutch,
The use of Xenopus oocytes to probe synaptic communication.
1988,
Pubmed
,
Xenbase
Thévenod,
Characterization of inositol 1,4,5-trisphosphate-sensitive (IsCaP) and -insensitive (IisCaP) nonmitochondrial Ca2+ pools in rat pancreatic acinar cells.
1989,
Pubmed
Tigyi,
A serum factor that activates the phosphatidylinositol phosphate signaling system in Xenopus oocytes.
1990,
Pubmed
,
Xenbase
Tsien,
A non-disruptive technique for loading calcium buffers and indicators into cells.
1981,
Pubmed
Yoshida,
A potassium current evoked by growth hormone-releasing hormone in follicular oocytes of Xenopus laevis.
1991,
Pubmed
,
Xenbase
Yoshida,
Chloride channels mediate the response to gonadotropin-releasing hormone (GnRH) in Xenopus oocytes injected with rat anterior pituitary mRNA.
1989,
Pubmed
,
Xenbase