XB-ART-8220
Mol Pharmacol
2001 Nov 01;605:989-98. doi: 10.1124/mol.60.5.989.
Show Gene links
Show Anatomy links
Activation of inositol 1,4,5-trisphosphate receptor is essential for the opening of mouse TRP5 channels.
???displayArticle.abstract???
We studied the opening mechanism of Ca(2+)-permeable channels formed with mouse transient receptor potential type 5 (mTRP5) using Xenopus oocytes. After stimulation of coexpressed muscarinic M(1) receptors with acetylcholine (ACh) in a Ca(2+)-free solution, switching to 2 mM Ca(2+)-containing solution evoked a large Cl(-) current, which reflects the opening of endogenous Ca(2+)-dependent Cl(-) channels following Ca(2+) entry through the expressed channels. The ACh-evoked response was not affected by a depletion of Ca(2+) store with thapsigargin but was inhibited by preinjection of antisense oligodeoxynucleotides (ODNs) to G(q), G(11), or both. The mTRP5 channel response was also induced by a direct activation of G proteins with injection of guanosine 5'-3-O-(thio)triphosphate (GTP gamma S). The ACh- and GTP gamma S-evoked responses were inhibited by either pretreatment with a phospholipase C inhibitor, U73122, or an inositol-1,4,5-trisphosphate (IP(3)) receptor inhibitor, xestospongin C (XeC). An activation of IP(3) receptors with injection of adenophostin A (AdA) evoked the mTRP5 channel response in a dose-dependent manner. The AdA-evoked response was not suppressed by preinjection of antisense ODNs to G(q/11) or U73122 but was suppressed by either preinjection of XeC or a peptide mimicking the IP(3) binding domain of Xenopus IP(3) receptor. These findings suggest that the activation of IP(3) receptor is essential for the opening of mTRP5 channels, and that neither G proteins, phosphoinositide metabolism, nor depletion of the Ca(2+) store directly modifies the IP(3) receptor-linked opening of mTRP5 channels.
???displayArticle.pubmedLink??? 11641427
???displayArticle.link??? Mol Pharmacol
Species referenced: Xenopus laevis
Genes referenced: ada.2 gnaq