Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-8396
Am J Physiol Lung Cell Mol Physiol 2001 Oct 01;2814:L852-67. doi: 10.1152/ajplung.2001.281.4.L852.
Show Gene links Show Anatomy links

Identification of a region of strong discrimination in the pore of CFTR.

McCarty NA .


???displayArticle.abstract???
The variety of methods used to identify the structural determinants of anion selectivity in the cystic fibrosis transmembrane conductance regulator Cl(-) channel has made it difficult to assemble the data into a coherent framework that describes the three-dimensional structure of the pore. Here, we compare the relative importance of sites previously studied and identify new sites that contribute strongly to anion selectivity. We studied Cl(-) and substitute anions in oocytes expressing wild-type cystic fibrosis transmembrane conductance regulator or 12-pore-domain mutants to determine relative permeability and relative conductance for 9 monovalent anions and 1 divalent anion. The data indicate that the region of strong discrimination resides between T338 and S341 in transmembrane 6, where mutations affected selectivity between Cl(-) and both large and small anions. Mutations further toward the extracellular end of the pore only strongly affected selectivity between Cl(-) and larger anions. Only mutations at S341 affected selectivity between monovalent and divalent anions. The data are consistent with a narrowing of the pore between the extracellular end and a constriction near the middle of the pore.

???displayArticle.pubmedLink??? 11557589
???displayArticle.link??? Am J Physiol Lung Cell Mol Physiol


Species referenced: Xenopus
Genes referenced: cftr