Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-24883
Mol Pharmacol 1991 May 01;395:587-91.
Show Gene links Show Anatomy links

Reduction of desensitization of a glutamate ionotropic receptor by antagonists.

Geoffroy M , Lambolez B , Audinat E , Hamon B , Crepel F , Rossier J , Kado RT .


???displayArticle.abstract???
The glutamate receptor channel subtype that responds to both quisqualate (QA) and alpha-amino-3-hydroxy-5-methyl-isoxazole-4-propionate (AMPA) was expressed in Xenopus oocytes injected with rat cerebral cortex mRNA. Voltage-clamp current responses to QA, AMPA, and glutamate (GLU) exhibited a rapid increase followed by a decrease to a desensitized steady state (DS). Perfusion with high agonist concentrations produced smaller DS responses than perfusion with low concentrations. During the DS, the current was increased by lowering of the concentration of agonist or by application of low concentrations of a competitive antagonist, 6,7-dinitroquinoxaline-2,3-dione (DNQX). This paradoxical increase of the agonist-induced currents during the DS was also observed in cultured Purkinje cells with another competitive antagonist, 6-cyano-7-nitro-quinoxaline-2,3-dione (CNQX). Dose-response curves obtained in oocytes were bell shaped, with a negative slope for high concentrations of QA. DNQX shifted these bell-shaped curves to the right. Together, these results indicate that the agonists are able to reversibly inhibit the AMPA receptor. The classical desensitization model of Katz and Thesleff [J. Physiol. (Lond.) 138:63-80 (1957)] cannot account for our observations.

???displayArticle.pubmedLink??? 1709719
???displayArticle.link??? Mol Pharmacol