Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Proc Natl Acad Sci U S A
1996 Dec 10;9325:14602-7. doi: 10.1073/pnas.93.25.14602.
Show Gene links
Show Anatomy links
Mouse cytoplasmic polyadenylylation element binding protein: an evolutionarily conserved protein that interacts with the cytoplasmic polyadenylylation elements of c-mos mRNA.
Gebauer F
,
Richter JD
.
???displayArticle.abstract???
Cytoplasmic polyadenylylation is an essential process that controls the translation of maternal mRNAs during early development and depends on two cis elements in the 3' untranslated region: the polyadenylylation hexanucleotide AAUAAA and a U-rich cytoplasmic polyadenylylation element (CPE). In searching for factors that could mediate cytoplasmic polyadenylylation of mouse c-mos mRNA, which encodes a serine/threonine kinase necessary for oocyte maturation, we have isolated the mouse homolog of CPEB, a protein that binds to the CPEs of a number of mRNAs in Xenopus oocytes and is required for their polyadenylylation. Mouse CPEB (mCPEB) is a 62-kDa protein that binds to the CPEs of c-mos mRNA. mCPEB mRNA is present in the ovary, testis, and kidney; within the ovary, this RNA is restricted to oocytes. mCPEB shows 80% overall identity with its Xenopus counterpart, with a higher homology in the carboxyl-terminal portion, which contains two RNA recognition motifs and a cysteine/histidine repeat. Proteins from arthropods and nematodes are also similar to this region, suggesting an ancient and widely used mechanism to control polyadenylylation and translation.
Aviv,
Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose.
1972, Pubmed
Aviv,
Purification of biologically active globin messenger RNA by chromatography on oligothymidylic acid-cellulose.
1972,
Pubmed
Ballantyne,
Poly (A) polymerases in the nucleus and cytoplasm of frog oocytes: dynamic changes during oocyte maturation and early development.
1995,
Pubmed
,
Xenbase
Bilger,
Nuclear polyadenylation factors recognize cytoplasmic polyadenylation elements.
1994,
Pubmed
,
Xenbase
Christerson,
orb is required for anteroposterior and dorsoventral patterning during Drosophila oogenesis.
1994,
Pubmed
Church,
Genomic sequencing.
1984,
Pubmed
Fox,
Poly(A) addition during maturation of frog oocytes: distinct nuclear and cytoplasmic activities and regulation by the sequence UUUUUAU.
1989,
Pubmed
,
Xenbase
Gebauer,
Translational control by cytoplasmic polyadenylation of c-mos mRNA is necessary for oocyte maturation in the mouse.
1994,
Pubmed
Gebauer,
Cloning and characterization of a Xenopus poly(A) polymerase.
1995,
Pubmed
,
Xenbase
Hake,
CPEB is a specificity factor that mediates cytoplasmic polyadenylation during Xenopus oocyte maturation.
1994,
Pubmed
,
Xenbase
Lantz,
The Drosophila orb RNA-binding protein is required for the formation of the egg chamber and establishment of polarity.
1994,
Pubmed
McGrew,
Translational control by cytoplasmic polyadenylation during Xenopus oocyte maturation: characterization of cis and trans elements and regulation by cyclin/MPF.
1990,
Pubmed
,
Xenbase
McGrew,
Poly(A) elongation during Xenopus oocyte maturation is required for translational recruitment and is mediated by a short sequence element.
1989,
Pubmed
,
Xenbase
O'Keefe,
Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg.
1989,
Pubmed
Olmsted,
Analysis of cytoskeletal structures using blot-purified monospecific antibodies.
1986,
Pubmed
Paris,
Maturation-specific polyadenylation and translational control: diversity of cytoplasmic polyadenylation elements, influence of poly(A) tail size, and formation of stable polyadenylation complexes.
1990,
Pubmed
,
Xenbase
Paris,
Maturation-specific polyadenylation: in vitro activation by p34cdc2 and phosphorylation of a 58-kD CPE-binding protein.
1991,
Pubmed
,
Xenbase
Paynton,
Polyadenylation and deadenylation of maternal mRNAs during oocyte growth and maturation in the mouse.
1994,
Pubmed
,
Xenbase
Sagata,
The product of the mos proto-oncogene as a candidate "initiator" for oocyte maturation.
1989,
Pubmed
,
Xenbase
Sallés,
Isolation of novel murine maternal mRNAs regulated by cytoplasmic polyadenylation.
1992,
Pubmed
,
Xenbase
Sallés,
Coordinate initiation of Drosophila development by regulated polyadenylation of maternal messenger RNAs.
1994,
Pubmed
Sanger,
DNA sequencing with chain-terminating inhibitors.
1977,
Pubmed
Sassoon,
Detection of messenger RNA by in situ hybridization.
1993,
Pubmed
Sheets,
Polyadenylation of c-mos mRNA as a control point in Xenopus meiotic maturation.
1995,
Pubmed
,
Xenbase
Simon,
Cytoplasmic polyadenylation of activin receptor mRNA and the control of pattern formation in Xenopus development.
1996,
Pubmed
,
Xenbase
Simon,
Translational control by poly(A) elongation during Xenopus development: differential repression and enhancement by a novel cytoplasmic polyadenylation element.
1992,
Pubmed
,
Xenbase
Simon,
Further analysis of cytoplasmic polyadenylation in Xenopus embryos and identification of embryonic cytoplasmic polyadenylation element-binding proteins.
1994,
Pubmed
,
Xenbase
Stebbins-Boaz,
Multiple sequence elements and a maternal mRNA product control cdk2 RNA polyadenylation and translation during early Xenopus development.
1994,
Pubmed
,
Xenbase
Stebbins-Boaz,
CPEB controls the cytoplasmic polyadenylation of cyclin, Cdk2 and c-mos mRNAs and is necessary for oocyte maturation in Xenopus.
1996,
Pubmed
,
Xenbase
Vassalli,
Translational control. Awakening dormant mRNAs.
1995,
Pubmed
Walker,
Unmasking mRNA in clam oocytes: role of phosphorylation of a 3' UTR masking element-binding protein at fertilization.
1996,
Pubmed
Wilson,
2.2 Mb of contiguous nucleotide sequence from chromosome III of C. elegans.
1994,
Pubmed