Click here to close
Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly.
We suggest using a current version of Chrome,
FireFox, or Safari.
Progression from meiosis I to meiosis II in Xenopus oocytes requires de novo translation of the mosxe protooncogene.
Kanki JP
,
Donoghue DJ
.
???displayArticle.abstract???
The meiotic maturation of Xenopus oocytes exhibits an early requirement for expression of the mosxe protooncogene. The mosxe protein has also been shown to be a component of cytostatic factor (CSF), which is responsible for arrest at metaphase of meiosis II. In this study, we have assayed the appearance of CSF activity in oocytes induced to mature either by progesterone treatment or by overexpression of mosxe. Progesterone-stimulated oocytes did not exhibit CSF activity until 30-60 min after germinal vesicle breakdown (GVBD). Both the appearance of CSF activity and the progression from meiosis I to meiosis II were inhibited by microinjection of mosxe antisense oligonucleotides just prior to GVBD. These results demonstrate a translational requirement for mosxe, which is temporally distinct from the requirement for mosxe expression at the onset of meiotic maturation. In contrast to progesterone-treated oocytes, oocytes that were induced to mature by overexpression of mosxe exhibited CSF activity at least 3 hr prior to GVBD. Despite the early appearance of CSF, these oocytes were not arrested at meiosis I. These results indicate that, although CSF activity is capable of stabilizing maturation-promoting factor (MPF) at meiosis II and in cleaving embryos, it is incapable of stabilizing MPF prior to or at meiosis I. These studies show that the complex regulation of the cell cycle during meiosis differs significantly from the regulation of the cell cycle during mitosis.
Arion,
cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF.
1988, Pubmed,
Xenbase
Arion,
cdc2 is a component of the M phase-specific histone H1 kinase: evidence for identity with MPF.
1988,
Pubmed
,
Xenbase
Cyert,
Regulation of MPF activity in vitro.
1988,
Pubmed
,
Xenbase
Draetta,
Cdc2 protein kinase is complexed with both cyclin A and B: evidence for proteolytic inactivation of MPF.
1989,
Pubmed
Draetta,
Activation of cdc2 protein kinase during mitosis in human cells: cell cycle-dependent phosphorylation and subunit rearrangement.
1988,
Pubmed
Dunphy,
The Xenopus cdc2 protein is a component of MPF, a cytoplasmic regulator of mitosis.
1988,
Pubmed
,
Xenbase
Evans,
Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division.
1983,
Pubmed
Freeman,
Protein kinases and protooncogenes: biochemical regulators of the eukaryotic cell cycle.
1991,
Pubmed
Freeman,
Effects of the v-mos oncogene on Xenopus development: meiotic induction in oocytes and mitotic arrest in cleaving embryos.
1990,
Pubmed
,
Xenbase
Freeman,
Xenopus homolog of the mos protooncogene transforms mammalian fibroblasts and induces maturation of Xenopus oocytes.
1989,
Pubmed
,
Xenbase
Gautier,
Cyclin is a component of maturation-promoting factor from Xenopus.
1990,
Pubmed
,
Xenbase
Gautier,
Purified maturation-promoting factor contains the product of a Xenopus homolog of the fission yeast cell cycle control gene cdc2+.
1988,
Pubmed
,
Xenbase
Gerhart,
Cell cycle dynamics of an M-phase-specific cytoplasmic factor in Xenopus laevis oocytes and eggs.
1984,
Pubmed
,
Xenbase
Labbe,
Activation at M-phase of a protein kinase encoded by a starfish homologue of the cell cycle control gene cdc2+.
1988,
Pubmed
,
Xenbase
Maller,
Xenopus oocytes and the biochemistry of cell division.
1990,
Pubmed
,
Xenbase
Masui,
Cytoplasmic control of nuclear behavior during meiotic maturation of frog oocytes.
1971,
Pubmed
Meyerhof,
Properties of a cytostatic factor from Xenopus laevis eggs.
1979,
Pubmed
,
Xenbase
Meyerhof,
Ca and Mg control of cytostatic factors from Rana pipiens oocytes which cause metaphase and cleavage arrest.
1977,
Pubmed
Minshull,
Translation of cyclin mRNA is necessary for extracts of activated xenopus eggs to enter mitosis.
1989,
Pubmed
,
Xenbase
Moreno,
Substrates for p34cdc2: in vivo veritas?
1990,
Pubmed
Murray,
The role of cyclin synthesis and degradation in the control of maturation promoting factor activity.
1989,
Pubmed
,
Xenbase
Murray,
Cyclin synthesis drives the early embryonic cell cycle.
1989,
Pubmed
,
Xenbase
Nurse,
Universal control mechanism regulating onset of M-phase.
1990,
Pubmed
O'Keefe,
Microinjection of antisense c-mos oligonucleotides prevents meiosis II in the maturing mouse egg.
1989,
Pubmed
Pines,
p34cdc2: the S and M kinase?
1990,
Pubmed
Sagata,
Function of c-mos proto-oncogene product in meiotic maturation in Xenopus oocytes.
1988,
Pubmed
,
Xenbase
Sagata,
The product of the mos proto-oncogene as a candidate "initiator" for oocyte maturation.
1989,
Pubmed
,
Xenbase
Sagata,
The c-mos proto-oncogene product is a cytostatic factor responsible for meiotic arrest in vertebrate eggs.
1989,
Pubmed
,
Xenbase
Smith,
The interaction of steroids with Rana pipiens Oocytes in the induction of maturation.
1971,
Pubmed
Solomon,
Cyclin activation of p34cdc2.
1990,
Pubmed
,
Xenbase
Wasserman,
Effects of cyclohexamide on a cytoplasmic factor initiating meiotic naturation in Xenopus oocytes.
1975,
Pubmed
,
Xenbase
Wasserman,
The cyclic behavior of a cytoplasmic factor controlling nuclear membrane breakdown.
1978,
Pubmed
,
Xenbase
Wasserman,
A cytoplasmic factor promoting oocyte maturation: its extraction and preliminary characterization.
1976,
Pubmed
,
Xenbase
Watanabe,
Specific proteolysis of the c-mos proto-oncogene product by calpain on fertilization of Xenopus eggs.
1989,
Pubmed
,
Xenbase
Westendorf,
The role of cyclin B in meiosis I.
1989,
Pubmed
,
Xenbase