Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-48588
Nat Cell Biol 2013 Dec 01;1512:1434-44. doi: 10.1038/ncb2880.
Show Gene links Show Anatomy links

The Cep63 paralogue Deup1 enables massive de novo centriole biogenesis for vertebrate multiciliogenesis.

Zhao H , Zhu L , Zhu Y , Cao J , Li S , Huang Q , Xu T , Huang X , Yan X , Zhu X .


???displayArticle.abstract???
Dense multicilia in higher vertebrates are important for luminal flow and the removal of thick mucus. To generate hundreds of basal bodies for multiciliogenesis, specialized terminally differentiated epithelial cells undergo massive centriole amplification. In proliferating cells, however, centriole duplication occurs only once per cell cycle. How cells ensure proper regulation of centriole biogenesis in different contexts is poorly understood. We report that the centriole amplification is controlled by two duplicated genes, Cep63 and Deup1. Cep63 regulates mother-centriole-dependent centriole duplication. Deup1 governs deuterosome assembly to mediate large-scale de novo centriole biogenesis. Similarly to Cep63, Deup1 binds to Cep152 and then recruits Plk4 to activate centriole biogenesis. Phylogenetic analyses suggest that Deup1 diverged from Cep63 in a certain ancestor of lobe-finned fishes during vertebrate evolution and was subsequently adopted by tetrapods. Thus, the Cep63 gene duplication has enabled mother-centriole-independent assembly of the centriole duplication machinery to satisfy different requirements for centriole number.

???displayArticle.pubmedLink??? 24240477
???displayArticle.link??? Nat Cell Biol


Species referenced: Xenopus
Genes referenced: cep152 cep63 deup1 plk4

References [+] :
Amemiya, The African coelacanth genome provides insights into tetrapod evolution. 2013, Pubmed