Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-26458
J Membr Biol 1989 Oct 01;1111:93-102.
Show Gene links Show Anatomy links

Endogenous D-glucose transport in oocytes of Xenopus laevis.

Weber WM , Schwarz W , Passow H .


???displayArticle.abstract???
Endogenous glucose uptake by the oocytes of Xenopus laevis consists of two distinct components: one that is independent of extracellular Na+, and the other one that represents Na+-glucose cotransport. The latter shows similar characteristics as 2 Na+-1 glucose cotransport of epithelial cells: The similarities include the dependencies on external concentrations of Na+, glucose, and phlorizin, and on pH. As in epithelial cells, the glucose uptake in oocytes can also be stimulated by lanthanides. Both the electrogenic cotransport and the inhibition by phlorizin are voltage-dependent; the data are compatible with the assumption that the membrane potential acts as a driving force for the reaction cycle of the transport process. In particular, hyperpolarization seems to stimulate transport by recruitment of substrate binding sites to the outer membrane surface. The results described pertain to oocytes arrested in the prophase of the first meiotic division; maturation of the oocytes leads to a downregulation of both the Na+-independent and the Na+-dependent transport systems. The effect on the Na+-dependent cotransport is the consequence of a change of driving force due to membrane depolarization associated with the maturation process.

???displayArticle.pubmedLink??? 2810354




References [+] :
Alavi, Sodium-dependent glucose transport by cultured proximal tubule cells. 1987, Pubmed