Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-41070
J Gen Physiol 2009 Nov 01;1345:409-36. doi: 10.1085/jgp.200910251.
Show Gene links Show Anatomy links

Closed-channel block of BK potassium channels by bbTBA requires partial activation.

Tang QY , Zeng XH , Lingle CJ .


???displayArticle.abstract???
Blockade of large-conductance Ca(2+)-activated K(+) (BK) channels by the bulky quaternary ammonium compound, N-(4-[benzoyl]benzyl)-N,N,N-tributylammonium (bbTBA), exhibits features consistent with blockade of both closed and open states. Here, we examine block of closed BK channels by bbTBA and how it may differ from block of open channels. Although our observations generally confirm earlier results, we describe three observations that are inconsistent with a model in which closed and open channels are equally accessible to blockade by bbTBA. First, block by bbTBA exhibits Ca(2+)-dependent features that are inconsistent with strictly state-independent block. Second, the steady-state voltage dependence of bbTBA block at negative potentials shows that any block of completely closed states either does not occur or is completely voltage independent. Third, determination of the fractional unblock by bbTBA at either low or high Ca(2+) reveals deviations from a model in which open- and closed-state block is identical. The results support the view that bbTBA blockade of fully closed channels does not occur. We imagine two general types of explanation. First, a stronger voltage dependence of closed-channel block may minimize the contribution of closed-channel block at negative potentials. Second, voltage-dependent conformational changes among closed-channel states may permit block by bbTBA. The analysis supports the latter view, suggesting that bbTBA blockade of fully closed channels does not occur, but the ability of bbTBA to block a closed channel requires movement of one or more voltage sensors. Models in which block is coupled to voltage sensor movement can qualitatively account for (1) the ability of open-channel block to better fit block of conductance-voltage curves at high Ca(2+); (2) the voltage dependence of fractional availability; and (3) the fractional unblock at different open probabilities. BK channels appear to undergo voltage-dependent conformational changes among closed states that are permissive for bbTBA block.

???displayArticle.pubmedLink??? 19858359
???displayArticle.pmcLink??? PMC2768800
???displayArticle.link??? J Gen Physiol
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: kcnma1


???attribute.lit??? ???displayArticles.show???
References [+] :
Armstrong, The inner quaternary ammonium ion receptor in potassium channels of the node of Ranvier. 1972, Pubmed