Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-34849
Dev Dyn 2007 Jan 01;2361:171-83. doi: 10.1016/j.exer.2006.09.015.
Show Gene links Show Anatomy links

Noggin signaling from Xenopus animal blastomere lineages promotes a neural fate in neighboring vegetal blastomere lineages.

Huang S , Yan B , Sullivan SA , Moody SA .


???displayArticle.abstract???
In Xenopus, localized factors begin to regionalize embryonic fates prior to the inductive interactions that occur during gastrulation. We previously reported that an animal-to-vegetal signal that occurs prior to gastrulation promotes primary spinal neuron fate in vegetal equatorial (C-tier) blastomere lineages. Herein we demonstrate that maternal mRNA encoding noggin is enriched in animal tiers and at low concentrations in the C-tier, suggesting that the neural fates of C-tier blastomeres may be responsive to early signaling from their neighboring cells. In support of this hypothesis, experimental alteration of the levels of Noggin from animal equatorial (B-tier) or BMP4 from vegetal (D-tier) blastomeres significantly affects the numbers of primary spinal neurons derived from their neighboring C-tier blastomeres. These effects are duplicated in blastomere explants isolated at cleavage stages and cultured in the absence of gastrulation interactions. Co-culture with animal blastomeres enhanced the expression of zygotic neural markers in C-tier blastomere explants, whereas co-culture with vegetal blastomeres repressed them. The expression of these markers in C-tier explants was promoted when Noggin was transiently added to the culture during cleavage/morula stages, and repressed with the transient addition of BMP4. Reduction of Noggin translation in B-tier blastomeres by antisense morpholino oligonucleotides significantly reduced the efficacy of neural marker induction in C-tier explants. These experiments indicate that early anti-BMP signaling from the animal hemisphere recruits vegetal equatorial cells into the neural precursor pool prior to interactions that occur during gastrulation.

???displayArticle.pubmedLink??? 17096409
???displayArticle.link??? Dev Dyn
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: bmp4 gal.2 nog sox2
???displayArticle.morpholinos??? nog MO1


???attribute.lit??? ???displayArticles.show???