XB-ART-25084
Science
1991 Feb 01;2514993:570-3.
Show Gene links
Show Anatomy links
Protein kinase C and regulation of the local competence of Xenopus ectoderm.
???displayArticle.abstract???
The limited competence of embryonic tissue to respond to an inductive signal has an essential, regulatory function in embryonic induction. The molecular basis for the competence of Xenopus ectoderm to differentiate into neural tissue was investigated. Dorsal mesoderm or 12-O-tetradecanoyl phorbol-13-acetate (TPA) caused in vivo activation of protein kinase C (PKC) and neural differentiation mainly in dorsal ectoderm and to a lesser extent in ventral ectoderm. These data correlate with the observations that PKC preparations from dorsal and ventral ectoderm differ, the dorsal PKC preparation being more susceptible to activation by TPA and diolein than is the ventral PKC preparation. Monoclonal antibodies against the bovine PKC alpha plus beta or gamma isozymes immunostained dorsal and ventral ectoderm, respectively, which suggests different localizations of PKC isozymes. These results suggest that PKC participates in the establishment of embryonic competence.
???displayArticle.pubmedLink??? 1990433
???displayArticle.link??? Science