Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-15436
Nature 1998 Feb 05;3916667:605-8. doi: 10.1038/35416.
Show Gene links Show Anatomy links

The conduction pore of a cardiac potassium channel.

Tai KK , Goldstein SA .


???displayArticle.abstract???
Ion channels form transmembrane water-filled pores that allow ions to cross membranes in a rapid and selective fashion. The amino acid residues that line these pores have been sought to reveal the mechanisms of ion conduction and selectivity. The pore (P) loop is a stretch of residues that influences single-channel-current amplitude, selectivity among ions and open-channel blockade and is conserved in potassium-channel subunits previously recognized to contribute to pore formation. To date, potassium-channel pores have been shown to form by symmetrical alignment of four P loops around a central conduction pathway. Here we show that the selectivity-determining pore region of the voltage-gated potassium channel of human heart through which the I(Ks) current passes includes the transmembrane segment of the non-P-loop protein minK. Two adjacent residues in this segment of minK are exposed in the pore on either side of a short barrier that restricts the movement of sodium, cadmium and zinc ions across the membrane. Thus, potassium-selective pores are not restricted to P loops or a strict P-loop geometry.

???displayArticle.pubmedLink??? 9468141
???displayArticle.link??? Nature


Species referenced: Xenopus
Genes referenced: kcne1 mink1