Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-7277
J Biol Chem 2002 Jun 28;27726:23587-95. doi: 10.1074/jbc.M200448200.
Show Gene links Show Anatomy links

Molecular determinants of voltage-dependent human ether-a-go-go related gene (HERG) K+ channel block.

Sánchez-Chapula JA , Navarro-Polanco RA , Culberson C , Chen J , Sanguinetti MC .


???displayArticle.abstract???
The structural determinants for the voltage-dependent block of ion channels are poorly understood. Here we investigate the voltage-dependent block of wild-type and mutant human ether-a-go-go related gene (HERG) K(+) channels by the antimalarial compound chloroquine. The block of wild-type HERG channels expressed in Xenopus oocytes was enhanced as the membrane potential was progressively depolarized. The IC(50) was 8.4 +/- 0.9 microm when assessed during 4-s voltage clamp pulses to 0 mV. Chloroquine also slowed the apparent rate of HERG deactivation, reflecting the inability of drug-bound channels to close. Mutation to alanine of aromatic residues (Tyr-652 or Phe-656) located in the S6 domain of HERG greatly reduced the potency of channel block by chloroquine (IC(50) > 1 mm at 0 mV). However, mutation of Tyr-652 also altered the voltage dependence of the block. In contrast to wild-type HERG, block of Y652A HERG channels was diminished by progressive membrane depolarization, and complete relief from block was observed at +40 mV. HERG channel block was voltage-independent when the hydroxyl group of Tyr-652 was removed by mutating the residue to Phe. Together these findings indicate a critical role for Tyr-652 in voltage-dependent block of HERG channels. Molecular modeling was used to define energy-minimized dockings of chloroquine to the central cavity of HERG. Our experimental findings and modeling suggest that chloroquine preferentially blocks open HERG channels by cation-pi and pi-stacking interactions with Tyr-652 and Phe-656 of multiple subunits.

???displayArticle.pubmedLink??? 11960982
???displayArticle.link??? J Biol Chem
???displayArticle.grants??? [+]

Species referenced: Xenopus
Genes referenced: gnao1 kcnh1 kcnh2