XB-ART-1733
Biochemistry
2005 Jun 28;4425:9140-9. doi: 10.1021/bi050661e.
Show Gene links
Show Anatomy links
The loop C region of the murine 5-HT3A receptor contributes to the differential actions of 5-hydroxytryptamine and m-chlorophenylbiguanide.
???displayArticle.abstract???
Sequence and predicted structural similarities between members of the Cys loop superfamily of ligand-gated ion channel receptors and the acetylcholine binding protein (AChBP) suggest that the ligand-binding site is formed by six loops that intersect at subunit interfaces. We employed site-directed mutagenesis to investigate the role of amino acids from the loop C region of the murine 5-HT(3AS)R in interacting with two structurally different agonists, serotonin (5-HT) and m-chlorophenylbiguanide (mCPBG). Mutant receptors were evaluated using radioligand binding, two-electrode voltage clamp, and immunofluorescence studies. Electrophysiological assays were employed to identify changes in response characteristics and relative efficacies of mCPBG and the partial agonist, 2-methyl 5-HT (2-Me5-HT). We have also constructed novel 5-HT and mCPBG docked models of the receptor binding site based on homology models of the AChBP. Both ligand-docked models correlate well with results from mutagenesis and electrophysiological assays. Four key amino acids were identified as being important to ligand binding and/or gating of the receptor. Among these, I228 and D229 are specific for effects mediated by 5-HT compared to mCPBG, indicating a differential interaction of these ligands with loop C. Residues F226 and Y234 are important for both 5-HT and mCPBG interactions. Mutations at F226, I228, and Y234 also altered the relative efficacies of agonists, suggesting a role in the gating mechanism.
???displayArticle.pubmedLink??? 15966738
???displayArticle.link??? Biochemistry
???displayArticle.grants???
Species referenced: Xenopus laevis
Genes referenced: fat1