Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-54790
J Vis Exp 2018 Mar 15;133:. doi: 10.3791/57465.
Show Gene links Show Anatomy links

Preparations and Protocols for Whole Cell Patch Clamp Recording of Xenopus laevis Tectal Neurons.

Liu Z , Donnelly KB , Pratt KG .


???displayArticle.abstract???
The Xenopus tadpole retinotectal circuit, comprised of the retinal ganglion cells (RGCs) in the eye which form synapses directly onto neurons in the optic tectum, is a popular model to study how neural circuits self-assemble. The ability to carry out whole cell patch clamp recordings from tectal neurons and to record RGC-evoked responses, either in vivo or using a whole brain preparation, has generated a large body of high-resolution data about the mechanisms underlying normal, and abnormal, circuit formation and function. Here we describe how to perform the in vivo preparation, the original whole brain preparation, and a more recently developed horizontal brain slice preparation for obtaining whole cell patch clamp recordings from tectal neurons. Each preparation has unique experimental advantages. The in vivo preparation enables the recording of the direct response of tectal neurons to visual stimuli projected onto the eye. The whole brain preparation allows for the RGC axons to be activated in a highly controlled manner, and the horizontal brain slice preparation allows recording from across all layers of the tectum.

???displayArticle.pubmedLink??? 29608176
???displayArticle.pmcLink??? PMC5901764
???displayArticle.link??? J Vis Exp
???displayArticle.grants??? [+]


References [+] :
Aizenman, Visually driven regulation of intrinsic neuronal excitability improves stimulus detection in vivo. 2003, Pubmed, Xenbase