XB-ART-3509
Biochemistry
2004 Jun 01;4321:6656-62. doi: 10.1021/bi049906y.
Show Gene links
Show Anatomy links
Iodo-alpha-conotoxin MI selectively binds the alpha/delta subunit interface of muscle nicotinic acetylcholine receptors.
???displayArticle.abstract???
The embryonic mouse muscle nicotinic acetylcholine receptor (nAChR) is a ligand-gated ion channel formed by alpha1, beta1, delta, and gamma subunits. The receptor contains two ligand binding sites at alpha/delta and alpha/gamma subunit interfaces. [(3)H]Curare preferentially binds the alpha/gamma interface. We describe the synthesis and properties of a high-affinity iodinated ligand that selectively binds the alpha/delta interface. An analogue of alpha-conotoxin MI was synthesized with an iodine attached to Tyr-12 (iodo-alpha-MI). The analogue potently blocks the fetal mouse muscle subtype of nAChR expressed in Xenopus oocytes. It failed, however, to block alpha3beta4, alpha4beta2, or alpha7 nAChRs. Iodo-alpha-MI potently blocks the alpha1beta1delta but not the alpha1beta1gamma subunit combination expressed in Xenopus oocytes indicating selectivity for the alpha/delta subunit interface. Alpha-conotoxin MI was subsequently radioiodinated, and its properties were further evaluated. Saturation experiments indicate that radioiodinated alpha-conotoxin MI binds to TE671 cell homogenates with a Hill slope of 0.95 +/- 0.0094. Kinetic studies indicate that the binding of [(125)I]alpha-conotoxin MI is reversible (k(off) = 0.084 +/- 0.0045 min(-1)); k(on) is 8.5 x 10(7) min(-1) M(-1). The calculated k(d) is 0.98 nM. This potency is approximately 20-fold higher than the unmodified alpha-MI peptide. Unlike [(125)I]alpha-bungarotoxin, [(125)I]alpha-conotoxin MI binding to TE671 cell homogenates is fully displaceable by the small molecule antagonist d-tubocurarine.
???displayArticle.pubmedLink??? 15157099
???displayArticle.link??? Biochemistry
???displayArticle.grants???