Xenbase may experience sporadic downtime from September 1st to September 3rd due to scheduled IT maintenance work.

We apologize for the inconvenience.

Click on this message to dismiss it.
Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-50279
J Membr Biol 2015 Aug 01;2484:795-810. doi: 10.1007/s00232-015-9797-6.
Show Gene links Show Anatomy links

Evidence for a Revised Ion/Substrate Coupling Stoichiometry of GABA Transporters.

Willford SL , Anderson CM , Spencer SR , Eskandari S .


???displayArticle.abstract???
Plasma membrane γ-aminobutyric acid (GABA) transporters (GATs) are electrogenic transport proteins that couple the cotranslocation of Na(+), Cl(-), and GABA across the plasma membrane of neurons and glia. A fundamental property of the transporter that determines its ability to concentrate GABA in cells and, hence, regulate synaptic and extra-synaptic GABA concentrations, is the ion/substrate coupling stoichiometry. Here, we scrutinized the currently accepted 2 Na(+):1 Cl(-):1 GABA stoichiometry because it is inconsistent with the measured net charge translocated per co-substrate (Na(+), Cl(-), and GABA). We expressed GAT1 and GAT3 in Xenopus laevis oocytes and utilized thermodynamic and uptake under voltage-clamp measurements to determine the stoichiometry of the GABA transporters. Voltage-clamped GAT1-expressing oocytes were internally loaded with GABA, and the reversal potential (V rev) of the transporter-mediated current was recorded at different external concentrations of Na(+), Cl(-), or GABA. The shifts in V rev for a tenfold change in the external Na(+), Cl(-), and GABA concentration were 84 ± 4, 30 ± 1, and 29 ± 1 mV, respectively. To determine the net charge translocated per Na(+), Cl(-), and GABA, we measured substrate fluxes under voltage clamp in cells expressing GAT1 or GAT3. Charge flux to substrate flux ratios were 0.7 ± 0.1 charge/Na(+), 2.0 ± 0.2 charges/Cl(-), and 2.1 ± 0.1 charges/GABA. Altogether, our results strongly suggest a 3 Na(+):1 Cl(-):1 GABA coupling stoichiometry for the GABA transporters. The revised stoichiometry has important implications for understanding the contribution of GATs to GABAergic signaling in health and disease.

???displayArticle.pubmedLink??? 25824654
???displayArticle.link??? J Membr Biol
???displayArticle.grants??? [+]

Species referenced: Xenopus laevis
Genes referenced: slc6a1 slc6a11

References [+] :
Allen, Reversal or reduction of glutamate and GABA transport in CNS pathology and therapy. 2004, Pubmed