Click here to close Hello! We notice that you are using Internet Explorer, which is not supported by Xenbase and may cause the site to display incorrectly. We suggest using a current version of Chrome, FireFox, or Safari.
XB-ART-16205
J Gen Physiol 1997 Aug 01;1102:119-33. doi: 10.1085/jgp.110.2.119.
Show Gene links Show Anatomy links

Functional expression of Drosophila para sodium channels. Modulation by the membrane protein TipE and toxin pharmacology.

Warmke JW , Reenan RA , Wang P , Qian S , Arena JP , Wang J , Wunderler D , Liu K , Kaczorowski GJ , Van der Ploeg LH , Ganetzky B , Cohen CJ .


???displayArticle.abstract???
The Drosophila para sodium channel alpha subunit was expressed in Xenopus oocytes alone and in combination with tipE, a putative Drosophila sodium channel accessory subunit. Coexpression of tipE with para results in elevated levels of sodium currents and accelerated current decay. Para/TipE sodium channels have biophysical and pharmacological properties similar to those of native channels. However, the pharmacology of these channels differs from that of vertebrate sodium channels: (a) toxin II from Anemonia sulcata, which slows inactivation, binds to Para and some mammalian sodium channels with similar affinity (Kd congruent with 10 nM), but this toxin causes a 100-fold greater decrease in the rate of inactivation of Para/TipE than of mammalian channels; (b) Para sodium channels are >10-fold more sensitive to block by tetrodotoxin; and (c) modification by the pyrethroid insecticide permethrin is >100-fold more potent for Para than for rat brain type IIA sodium channels. Our results suggest that the selective toxicity of pyrethroid insecticides is due at least in part to the greater affinity of pyrethroids for insect sodium channels than for mammalian sodium channels.

???displayArticle.pubmedLink??? 9236205
???displayArticle.pmcLink??? PMC2233785
???displayArticle.link??? J Gen Physiol
???displayArticle.grants??? [+]



???attribute.lit??? ???displayArticles.show???
References [+] :
Adams, Neurotoxins: overview of an emerging research technology. 1994, Pubmed